

​Gameroom​ #

Business Through Smart Contracts
Technical Walkthrough

 ​for Splinter v0.3.4
October 31, 2019

© 2019 Cargill, Incorporated

Table of Contents
Introduction 6

The Cast 7

The Setting 7

Prologue: An Initial Conversation 8

Act Ⅰ: Alice and Bob Create a Gameroom 9
Scene 1: Alice logs into Acme’s Gameroom application 9
Scene 2: Alice creates a new gameroom 10
INTERMISSION 12
Scene 3: Bob logs into Bubba Bakery's Gameroom application 13
Scene 4: Bob checks his notifications 14
Scene 5: Bob accepts Alice’s gameroom invitation 15
Scene 6: Alice sees that Bob accepted her invitation 16

Behind the Scenes: A Look at Act Ⅰ, Alice and Bob Create a Gameroom 17
Ⅰ-1. Behind scene 1: Alice logs into Acme’s Gameroom UI 17

Ⅰ-1.1. Acme UI sends authorization request to Gameroom REST API 17
Ⅰ-1.2. Gameroom REST API authorizes login 18
Ⅰ-1.3. Gameroom REST API returns login success response 19
Ⅰ-1.4. Acme UI requests a list of gamerooms 20
Ⅰ-1.5. Acme UI requests a list of invitations 21

Ⅰ-2. Behind scene 2: Alice creates a new gameroom 22
Ⅰ-2.1. Acme UI loads members list for New Gameroom dialog 23
Ⅰ-2.2. Acme UI sends Create Gameroom request to Gameroom REST API 24
Ⅰ-2.3. Gameroom REST API sends CircuitManagementPayload 25
Ⅰ-2.4. Acme node peers with Bubba Bakery node 28
Ⅰ-2.5. Splinter daemons use consensus to process the circuit request 29

Ⅰ-2.5.1. Acme node validates CircuitManagmentPayload 29
Ⅰ-2.5.2. Acme node sends Circuit Create request to Bubba Bakery node 32
Ⅰ-2.5.3. Bubba Bakery node receives Circuit Create request from Acme node 33
Ⅰ-2.5.4. Bubba Bakery node validates CircuitManagmentPayload 33
Ⅰ-2.5.5. Acme and Bubba Bakery reach consensus 34

Ⅰ-2.6. Admin services commit pending circuit proposal 34
Ⅰ-2.7. Admin services notify authorization handler of pending circuit proposal 34
Ⅰ-2.8. Gameroom daemons write notification to Gameroom database 36

Ⅰ-2.8.1. New gameroom table entry 36
Ⅰ-2.8.2. New gameroom_member table entry 37
Ⅰ-2.8.3. New gameroom_service table entry 38
Ⅰ-2.8.4. New gameroom_proposal table entry 39
Ⅰ-2.8.5. New gameroom_notification table entry 40

© 2019 Cargill, Incorporated 2

Ⅰ-2.9. Alice sees notification that gameroom invitation was sent 41
Ⅰ-3. Behind scene 3: Bob logs into Bubba Bakery's Gameroom application 43

Ⅰ-3.1. Bubba Bakery UI sends authorization request to Gameroom REST API 43
Ⅰ-3.2. Bubba Bakery Gameroom REST API authorizes the login 44
Ⅰ-3.3. Bubba Bakery Gameroom REST API returns login success response 45
Ⅰ-3.4. Bubba Bakery UI requests list of existing gamerooms 46
Ⅰ-3.5. Bubba Bakery UI requests list of gameroom invitations 47
Ⅰ-3.6. Bubba Bakery UI queries for unread notifications 48

Ⅰ-4. Behind Scene 4: Bob checks his notifications 49
Ⅰ-5. Behind Scene 5: Bob accepts Alice’s invitation 51

Ⅰ-5.1. Bubba Bakery UI submits Accept Invitation request to Gameroom REST API 51
Ⅰ-5.2. Gameroom REST API submits Proposal Accept request to Splinter REST API 52
Ⅰ-5.3. Bubba Bakery node votes "yes" (validates the vote) 54
Ⅰ-5.4. Bubba Bakery node sends proposal accept vote to Acme node 56
Ⅰ-5.5. Bubba Bakery admin service checks for approval and creates a circuit 56
Ⅰ-5.6. Bubba Bakery admin service notifies Gameroom daemon of new circuit 57
Ⅰ-5.7. Bubba Bakery admin service sends "ready to create services" to Acme 60
Ⅰ-5.8. Bubba Bakery admin service initializes scabbard service 61
Ⅰ-5.9. Bubba Bakery Gameroom daemon updates gameroom status in database 62

Ⅰ-6. Behind Scene 6: Alice sees that Bob accepted her invitation 64
Ⅰ-6.1. Acme admin service receives CircuitProposalVote from Bubba Bakery admin service 64
Ⅰ-6.2 Acme admin service checks for approval and creates circuit 64
Ⅰ-6.3. Acme admin service notifies Acme Gameroom daemon of new circuit 64
Ⅰ-6.4. Acme admin service tells Bubba Bakery that it is ready to create services 64
Ⅰ-6.5. Acme admin service creates scabbard service via service orchestration 65
Ⅰ-6.6. Acme Gameroom daemon submits Sabre transactions to add XO smart contract 65
Ⅰ-6.7. Both Gameroom daemons update gameroom status in database 66
Ⅰ-6.8. Acme Gameroom daemon notifies Acme UI 67
Ⅰ-6.9. Alice sees notification that new gameroom is ready 68

Act Ⅱ: Alice and Bob Play XO 69
Scene 1: Alice creates a new XO game 69
Scene 2: Alice makes the first move 71
Scene 3: Bob takes a turn 72
Scene 4: Alice wins the game 75
Scene 5: The triumph of Alice 77
Scene 6: The tragedy of Bob 77

Behind the Scenes: A Look at Act Ⅱ, Alice and Bob Play XO 78
Ⅱ-1. Behind Scene 1: Alice creates a new XO game 78

Ⅱ-1.1. Acme client sends ‘create game’ request to Gameroom REST API 78
Ⅱ-1.2. Acme Gameroom REST API sends ‘create' transaction to Acme scabbard service 79
Ⅱ-1.3. Scabbard services use consensus to commit the new game 79
Ⅱ-1.4. Scabbard services notify Gameroom daemons of state change 80

© 2019 Cargill, Incorporated 3

Ⅱ-1.5. Gameroom daemons update gameroom status in database 80
Ⅱ-1.6. Gameroom REST APIs tell clients that XO game is committed 82

Ⅱ-2. Behind Scene 2: Alice makes the first move 84
Ⅱ-3. Behind Scene 3: Bob takes a turn 88
Ⅱ-5. Behind Scene 5: Alice wins the game 92

Act Ⅲ: Alice Creates Gamerooms with Yoda and Zixi 93
Scene 1: The ketchup packet 93
Scene 2: Alice and Yoda set up a gameroom 93
Scene 3: Alice sets up a gameroom with Zixi 93
Scene 4: Alice's addiction 94

Behind the Scenes: A Look at Act Ⅲ, Alice creates Gamerooms with Yoda and Zixi 95

The Prequel: Setting Up the Gameroom Application 97
P.1. Running the Gameroom Demo with Docker 97
P.2. Registering a User in the Gameroom UI 99
P.3. Registering the Gameroom daemon for admin service events 101

Appendix A: Peer Authorization 102
A.1 The Authorization Process 102
A.2 Authorization Callbacks 103

Appendix B: Consensus 105
B.1. Consensus Interface 105
B.2. Two-Phase Commit 107

B.2.1. TwoPhaseMessage Types 108
B.2.2. Startup 108
B.2.3. Proposal Creation 109
B.2.4. Coordinator and Initial Verification 109
B.2.5. Verification 110
B.2.6. Proposal Result and Commit/Reject 110

Appendix C: Circuit Proposal Events 111
C.1. ProposalSubmitted event 112
C.2. ProposalRejected event 113
C.3. ProposalAccepted event 114
C.4. ProposalVote event 115

Appendix D: XO Smart Contract Specification 116
D.1. XO State Entries 116

D.1.1. State Addressing 116
D.2. XO Transaction Payload 117
D.3. XO Transaction Header 117

D.3.1. Inputs and Outputs 117
D.3.2. Dependencies 117
D.3.3. Family Name and Version 117

© 2019 Cargill, Incorporated 4

D.4. XO Execution 117

Glossary 119
admin circuit 120
admin service 120
alias 120
application authorization handler 120
circuit 120
circuit management type 120
circuit proposal 120
circuit roster 121
client 121
consensus 121
consensus proposal 121
Gameroom 121
gameroomd 121
invitation 121
member 121
peer nodes 121
peer services 121
pending circuit 121
scabbard 122
scabbard REST API 122
service 122
service orchestrator 122
splinterd 122
state delta export 122
two-phase commit 122

© 2019 Cargill, Incorporated 5

Introduction
Distributed ledger technologies have the potential to revolutionize how businesses communicate
and transact. At Cargill, we are leading the revolution with involvement in several open-source
projects, including ​Hyperledger Sawtooth​, ​Hyperledger Transact​, and ​Splinter​. This document
outlines an example application, ​Gameroom​, that uses technologies from each of these projects
to demonstrate our vision of using smart contracts to enhance business and customer
relationships.

Privacy and confidentiality between trading partners are important capabilities for (almost) all
multi-party interactions. These capabilities are especially critical in distributed applications. As a
result, the technology stack behind Gameroom​ ​differs from a common "shared-everything"
blockchain design; instead, it sculpts the underlying blockchain-like distributed ledger
technology into a sophisticated architecture that shares data only between the appropriate
participants.

Parts of this walkthrough are written as a script, in several acts, for which we recommend a
dramatic reading (as if performed on stage by very amateur actors). Each act is followed by a
"behind the scenes" chapter that describes the complex underlying technology and explains
what really happens when running the deceptively simple Gameroom application. A ​glossary​ at
the end defines the terms used by Splinter and the Gameroom application.

Note:​ This document is based on Splinter version 0.3.4. As Splinter matures, some details may
change (such as the exact format of messages).

© 2019 Cargill, Incorporated 6

https://sawtooth.hyperledger.org/
https://docs.rs/transact/
https://github.com/Cargill/splinter
https://github.com/Cargill/splinter/tree/master/examples/gameroom

The Cast

Alice, an employee at Acme Corporation

Bob, a project leader at Bubba Bakery

Yoda, a VP at ​Yoyodyne Systems

Zixi, head of IT at Zymogen Industries

The Setting
Two Splinter nodes are set up, one at Acme Corporation and one at Bubba Bakery. Alice and
Bob have each registered as a Gameroom user with an email address, a private key, and a
password. ​The Prequel​ explains the details of node setup and user registration.

© 2019 Cargill, Incorporated 7

Prologue: An Initial Conversation

ALICE, sitting in an office chair at a desk. MACBOOK PRO. Aging

desk PHONE. Alice picks up the receiver. Dials a phone number.

ALICE

Hi Bob.

Long pause. Alice rolls her eyes.

ALICE

Anyway, we need to get moving on setup -- yeah --

sure, it is a bit silly, but we need to prove how our

companies can use this new technology. We'll use the

gameroom to play a few games of --

Another pause. Alice sighs.

ALICE

Yes, we have to show that we can create a private and

secure connection between our two companies.

How about I send you -- right, I'll create the

gameroom and you'll see my invitation in your app.

Alice logs into her Mac. Starts up the BROWSER and clicks on

the ACME GAMEROOM bookmark. Browser displays a network error.

ALICE

One second; I got this Mac from IT but it doesn’t

have access to the corporate network -- yeah, I know.

Actually, just let me know if you don't get my

invitation in a few minutes -- Fine. OK, bye.

Alice hangs up the phone.

Alice pushes the Macbook aside. Reaches into her bag and heaves

out a Windows notebook. It looks old. Alice opens it up. Logs

in. Starts up the BROWSER and clicks on the ACME GAMEROOM

bookmark. The app starts to load.

© 2019 Cargill, Incorporated 8

Act Ⅰ: Alice and Bob Create a Gameroom

Scene 1: Alice logs into Acme’s Gameroom application

Alice looks at the GAMEROOM APP LOGIN SCREEN in her browser.

Alice enters her EMAIL and PASSWORD. Clicks LOG IN.

Success. The browser now displays the ACME GAMEROOM HOME

SCREEN.

© 2019 Cargill, Incorporated 9

© 2019 Cargill, Incorporated 10

Scene 2: Alice creates a new gameroom

Alice sees an empty MY GAMEROOMS sidebar (no gamerooms exist

yet). Alice creates a new gameroom by clicking on the ​+​ button
next to My Gamerooms.

Alice sees the NEW GAMEROOM DIALOG.

© 2019 Cargill, Incorporated 11

Alice looks at the OTHER ORGANIZATION pulldown list. She

selects BUBBA BAKERY.

Next, she enters a NAME for the new gameroom: Acme + Bubba.

Alice clicks SEND.

© 2019 Cargill, Incorporated 12

The New Gameroom dialog is replaced with the Acme Gameroom home

screen. A TOAST NOTIFICATION tells Alice that her invitation

has been sent to Bubba Bakery.

INTERMISSION

Live performances should include an intermission at this point,

because there is a lot that just happened (see ​"Behind the
Scenes: A Look at Act 1" ​).

© 2019 Cargill, Incorporated 13

Scene 3: Bob logs into Bubba Bakery's Gameroom application

BOB, muttering to himself, opens a BROWSER and searches for

“tic tac toe”. Gets distracted by Wikipedia’s list of games.

Plays Quantum Tic Tac Toe Online for 20 minutes. Eventually

hunts through his email for the right link and starts the BUBBA

BAKERY GAMEROOM APP.

Bob logs in with his EMAIL and PASSWORD.

Success. The browser now displays the BUBBA BAKERY GAMEROOM

HOME SCREEN.

© 2019 Cargill, Incorporated 14

Scene 4: Bob checks his notifications

Bob sees that he has a notification and clicks on the

NOTIFICATION ICON. The NOTIFICATION PANE shows an INVITATION

from Alice.

© 2019 Cargill, Incorporated 15

Scene 5: Bob accepts Alice’s gameroom invitation

Time passes.

Eventually, Bob clicks the notification. The notifications pane

disappears and the INVITATIONS TAB is shown. Bob clicks the

ACCEPT button on Alice's invitation.

© 2019 Cargill, Incorporated 16

Scene 6: Alice sees that Bob accepted her invitation

Alice notices that she has a notification and clicks on the

notification icon. The NOTIFICATIONS PANE appears, with the

happy news that Bob has accepted her invitation and that the

new Acme + Bubba gameroom has been created.

Alice clicks on the notification. The Notifications pane closes

and Alice is redirected to the ACME + BUBBA GAMEROOM SCREEN.

Alice and Bob’s gameroom is ready. They can now play games.

© 2019 Cargill, Incorporated 17

Behind the Scenes: A Look at Act Ⅰ, Alice and Bob
Create a Gameroom
This section explains what really happens during the apparently simple steps in Act Ⅰ. As you
read this section, see the ​glossary​ for definitions of unfamiliar terms.

Ⅰ-1. Behind scene 1: Alice logs into Acme’s Gameroom UI

When a user logs in, the user interface (UI) component of the Gameroom client application
works with the Gameroom REST API to check the user's email address and password. Each
Gameroom daemon stores the user credentials in a local PostgreSQL database; user
passwords are hashed so that they remain secret.

Ⅰ​-1.1. Acme UI sends authorization request to Gameroom REST API

When Alice clicks ​Log in​, the Acme Gameroom UI hashes the password, then sends an
authorization request to the Acme Gameroom daemon, ​gameroomd​. The request is handled by
the Gameroom REST API, which is a part of ​gameroomd​.

POST /users/authenticate

{

 email: "alice@acme.com",

 hashedPassword: "8e066d41...d99ada0d"

}

The UI does not reveal the user's password to the REST API because the password is used to
encrypt signing keys (as described in ​section Ⅰ-2.3, step 5​).

© 2019 Cargill, Incorporated 18

Ⅰ​-1.2. Gameroom REST API authorizes login

When the Acme Gameroom REST API receives the authorization request for Alice, it re-hashes
the password sent from the browser and compares the email and hashed password to Alice’s
entry in the Acme Gameroom daemon's local database. If they match, authentication was
successful.

The ​gameroom_user​ table in the Gameroom database has the following schema:

CREATE TABLE IF NOT EXISTS gameroom_user (

 email TEXT PRIMARY KEY,

 public_key TEXT NOT NULL,

 encrypted_private_key TEXT NOT NULL,

 hashed_password TEXT NOT NULL

);

Alice's public and private key pair was created during registration and was added to the Acme
Gameroom database (see ​The Prequel, section P.2​). The database has the following entry:

email hashed_password public_key encrypted_private_key

alice@acme.com 56ec82cb...480cad32

0384781f...5a7e4998 {\"iv\":...cgXrm\"}

© 2019 Cargill, Incorporated 19

Ⅰ​-1.3. Gameroom REST API returns login success response

If the user authentication was successful, the Gameroom REST API sends a response to the
Acme UI that contains Alice’s public key and encrypted private key.

{
email: “alice@acme.com”,
public_key: “0384781f...5a7e4998”,
encrypted_private_key: "{\"iv\":...cgXrm\"}",

}

Next, the UI must gather the information for the Acme Gameroom home screen that Alice will
see after logging in.

© 2019 Cargill, Incorporated 20

Ⅰ​-1.4. Acme UI requests a list of gamerooms
After a user has been authenticated, the UI gathers user-specific information for the home
screen. First, it requests the list of existing gamerooms for that user. (At this point, no
gamerooms exist.) Later, this walkthrough will describe what happens when there are
gamerooms for the UI to display.

1. When Alice logs in, the Acme UI makes a call to the Gameroom REST API for the list of

gamerooms.

GET /gamerooms

2. This call returns an empty list, since there are no gamerooms in the Acme Gameroom's

PostgreSQL database.

{

"data": [],
"paging": {

 "current": "/gamerooms?limit=100&offset=0",
 "offset": 0,
 "limit": 100,
 "total": 0,
 "first": "/gamerooms?limit=100&offset=0",
 "prev": "/gamerooms?limit=100&offset=0",
 "next": "/gamerooms?limit=100&offset=0",
 "last": "/gamerooms?limit=100&offset=0"

}
}

© 2019 Cargill, Incorporated 21

Ⅰ​-1.5. Acme UI requests a list of invitations
Next, the Acme Gameroom UI requests the list of gameroom invitations. In this scenario, Alice
has no invitations, so the list is empty. Later, the walkthrough will show what happens when a
user has unaccepted invitations.

1. When Alice logs in, the UI makes a call to the Gameroom REST API for the list of invitations

(also called ​circuit proposals​).

GET /proposals

2. Because Alice has no invitations, the Gameroom REST API returns an empty list.

{

"data": [],

"paging": {

 "current": "/proposals?limit=100&offset=0",

 "offset": 0,

 "limit": 100,

 "total": 0,

 "first": "/proposals?limit=100&offset=0",

 "prev": "/proposals?limit=100&offset=0",

 "next": "/proposals?limit=100&offset=0",

 "last": "/proposals?limit=100&offset=0"

}

}

At this point, Alice sees the Acme Gameroom home screen with no existing gamerooms or
invitations.

© 2019 Cargill, Incorporated 22

Ⅰ-2. Behind scene 2: Alice creates a new gameroom
The Gameroom home screen includes a button to create a new gameroom. When a user clicks
it, the UI requests the member list (possible other nodes) to use in the next dialog.

After the Acme UI has the member list, it displays the "New Gameroom" dialog, where Alice can
use the members list to select her opponent (called ​Other organization​ in the dialog), and enter
a name for the new gameroom. When she clicks ​Send​, the Acme UI starts the process of
sending Bob an invitation to the new gameroom.

A gameroom is enabled by a Splinter ​circuit​ that connects two or more systems, or ​nodes​. A
node registry​ stores a list of nodes that can participate in a circuit; the Splinter daemon,
splinterd​, can provide this list of nodes upon request. (The Gameroom example creates a
node registry that includes the Acme and Bubba Bakery nodes.) Splinter uses the term
members​ for the nodes that can be connected (or are connected) on a circuit.

A gameroom invitation is also called a ​circuit proposal​. Each gameroom proposal requires a
vote (an ​approval​) from each member, which is handled by two-phase commit consensus and a
consensus proposal​. When Alice creates a new gameroom, her action automatically includes a
vote from her organization (Acme Corporation) that approves the creation of that gameroom.
Her invitation to Bob, at Bubba's Bakery, is actually a request for his organization's vote to
approve the new circuit.

© 2019 Cargill, Incorporated 23

Ⅰ-2.1. Acme UI loads members list for New Gameroom dialog
First, the Acme Gameroom UI must load the list of members for the "New Gameroom" dialog.
The general process looks like this:

1. The UI makes this REST API call to the Gameroom REST API.

GET​ /nodes

2. The Gameroom REST API sends a ​GET​ request to the ​/nodes​ endpoint in the Splinter

REST API asking for the list of nodes.

3. The Splinter daemon, ​splinterd​, fetches the list of nodes from the node registry and sends

a response to the Gameroom REST API that includes the requested data. The "list of
nodes" response looks like this:

{

"data": [
 {
 "identity": "bubba-node-000",
 "metadata": {
 "organization": "Bubba Bakery",
 "endpoint": "tls://splinterd-node-bubba:8044"
 }
 },
 {
 "identity": "acme-node-000",
 "metadata": {
 "organization": "ACME Corporation"

"endpoint": "tls://splinterd-node-acme:8044",
 }
 }

],
"paging": {

 "current": "/nodes?limit=100&offset=0",
 "offset": 0,
 "limit": 100,

© 2019 Cargill, Incorporated 24

 "total": 2,
 "first": "/nodes?limit=100&offset=0",
 "prev": "/nodes?limit=100&offset=0",
 "next": "/nodes?limit=100&offset=0",
 "last": "/nodes?limit=100&offset=0"

}
}

4. The Gameroom REST API forwards the response to the Acme Gameroom UI, which uses

the list of nodes to build the members list in the New Gameroom dialog.

Ⅰ-2.2. Acme UI sends Create Gameroom request to Gameroom REST
API
In the New Gameroom dialog, Alice enters a unique name for the gameroom (​Acme + Bubba​)
and selects Bubba Bakery from the ​Other Organizations​ list. Then she clicks ​Send​ to forward
her invitation to Bob.

When Alice clicks on the ​Send​ button, the general process looks like this:

The UI sends a "create new gameroom" request to the Gameroom REST API that includes the
gameroom name (also called an ​alias​) and list of members in the proposed gameroom. Each
member entry includes the node ID, organization name, and endpoint for its Splinter REST API.
The request (also called a ​proposal​) looks like this:

POST /gamerooms/propose
{

“alias”: “Acme + Bubba”,
“members”: [

{
“identity”: “bubba-node-000”,
“metadata”: {

“organization”: “Bubba Bakery”,
“endpoint”: “tls://splinterd-node-bubba:8044”,
}

}],
}

© 2019 Cargill, Incorporated 25

Ⅰ-2.3. Gameroom REST API sends CircuitManagementPayload
When the Acme Gameroom REST API receives the proposal request, it uses that information to
create a ​CircuitManagementPayload​, which will eventually be sent to the Acme Splinter
daemon. Before sending the proposal request, the Gameroom REST API asks the Gameroom
UI to sign it with Alice's information.

1. The Gameroom daemon uses the information from the "create new gameroom" request to

create a new ​CircuitManagementPayload​.

The following example shows a YAML representation of the ​CircuitManagementPayload​.

Application metadata​:

alias: Acme + Bubba ​// Gameroom name chosen by Alice
scabbard_admin_keys:

 - <acme gameroomd public key>

Circuit definition​:

circuit_id: gameroom::acme-node-000::bubba-node-000::<UUIDv4>

authorization_type: Trust

members:

 - node_id: acme-node-000

 endpoint: tls://splinterd-node-acme:8044

 - node_id: bubba-node-000

 endpoint: tls://splinterd-node-bubba:8044

roster:

 - service_id: gameroom_acme-node-000

 service_type: scabbard

 allowed_nodes:

 - acme-node-000

 arguments:

 - peer_services:

 - gameroom_bubba-node-000

 admin_keys:

 - <acme gameroomd public key>

 - service_id: gameroom_bubba-node-000

 service_type: scabbard

 allowed_nodes:

 - bubba-node-000

 arguments:

 - peer_services:

 - gameroom_acme-node-000

 admin_keys:

 - <acme gameroomd public key>

circuit_management_type: gameroom

© 2019 Cargill, Incorporated 26

application_metadata: <bytes of the application metadata described above>

persistence: Any

durability: None

routes: Any

Header​:

Action: CIRCUIT_CREATE_REQUEST

requester: <public key of requester> ​// left empty by the REST API
payload_sha512: <sha512 hash of the circuit definition described above>

requester_node_id: acme-node-000

CircuitManagmentPayload​:

header: <bytes of header described above>

circuit_create_request: <circuit definition described above>

signature: <signature of bytes of the header> ​// left empty by the​ ​REST API

Note​ that the Gameroom REST API does not fill in the ​requester​ field in the header or the
signature in the ​CircuitManagementPayload​.

2. Before the payload can be sent, the Acme UI must sign the bytes of the

CircuitManagementPayload ​header. The Acme Gameroom REST API serializes the
payload and sends the bytes as a response to the UI.

{

"data": {
“Payload_bytes”: <bytes of the CircuitManagementPayload>

}
}

3. After receiving the response from the Gameroom REST API, the Acme UI deserializes the

CircuitManagementPayload​. It adds the requester’s public key to the header (in this case,
Alice is the requester), serializes the header, signs the header bytes, and adds the signature
to the payload. Finally, the UI serializes the complete payload.

4. The Acme UI submits the bytes of the signed payload to the Gameroom REST API.

POST /submit
Content-Type: application/octet-stream

<bytes of the signed CircuitManagementPayload>

5. The Acme Gameroom REST API forwards the payload to the Acme Splinter REST API.

POST /admin/submit

Content-Type: application/octet-stream

<bytes of the signed CircuitManagementPayload>

© 2019 Cargill, Incorporated 27

6. The Acme Splinter REST API calls the Acme admin service to forward the proposed
payload, a ​CircuitManagementPayload​ (described in the next section). The protobuf is
represented in YAML format:

CircuitManagmentPayload:

 header: <bytes of header described above>

 circuit_create_request:

 circuit:

 gameroom::acme-node-000::bubba-node-000::<UUIDv4>:

 auth: trust

 members:

acme-node-000:

 endpoints:

 - tls://splinterd-node-acme:8044

bubba-node-000:

 endpoints:

 - tls://splinterd-node-bubba:8044

 roster:

 gameroom_acme-node-000:

 service_type: scabbard

 allowed_nodes:

 - acme-node-000

 arguments:

 - peer_services:

 - gameroom_bubba-node-000

 admin_keys:

 - <acme gameroomd public key>

 gameroom_bubba-node-000:

 service_type: scabbard

 allowed_nodes:

 - bubba-node-000

 arguments:

 - peer_services:

 - gameroom_acme-node-000

 admin_keys:

 - <acme gameroomd public key>

 persistence: any

 durability: none

 routes: require_direct

 circuit_management_type: gameroom

 signature: <signature of bytes of requested circuit definition>

© 2019 Cargill, Incorporated 28

7. The Acme admin service checks that the ​CircuitManagementPayload​ signature is valid by
comparing it against the header bytes and the requester public key stored in the header.

8. Because the Acme and Bubba Bakery nodes are not yet peered (do not have an authorized

connection on the Splinter network), the ​CircuitManagmentPayload​ is placed in the
"pending payloads" queue for unpeered nodes.

Ⅰ-2.4. Acme node peers with Bubba Bakery node
Before the ​CircuitManagementPayload​ message can be validated, every member of the
circuit must be connected (peered).

The admin service on the Acme Splinter node (which has the service ID
admin::acme-node-000​) uses a ​PeerConnector​ to request connections with the members.
The ​PeerConnector​ joins a transport and a network in order to enable adding peers at runtime,
without having knowledge of the underlying transport.

1. Acme's admin service calls ​PeerConnector.connect​ with the node ID and the endpoint
listed in the proposed circuit. If the node is already connected, the peer connector returns
"​Ok​". If the node is not connected, the peer connector creates the connection and, if
successful, adds the connection to the Splinter network.

2. After the connection has been created, a message exchange starts for peer authorization
(described in ​Appendix A​).

3. When peer authorization succeeds, the Acme admin service is notified that the Bubba
Bakery node (​bubba-node-000​) has been successfully authorized. Acme and Bubba are
now peers.

4. The ​CircuitManagmentPayload​ is removed from the "pending payloads" queue and is
passed to the admin service handler for pending circuit payloads.

© 2019 Cargill, Incorporated 29

Ⅰ-2.5. Splinter daemons use consensus to process the circuit request
At this point, the circuit proposal is ready to be validated and approved (voted on with two-phase
commit consensus), as described in ​Appendix B​.

During this process, the admin services on both nodes (​admin::acme-node-000​ and
admin::bubba-node-000​) must agree that the ​CircuitManagementPayload​, which includes
CircuitCreateRequest​, is a valid request. Consensus manages each node's approval of the
proposal.

Ⅰ-2.5.1. Acme node validates CircuitManagmentPayload
1. The Acme admin service verifies that the ​CircuitManagementPayload​ and the included

CircuitCreateRequest​ are valid.

a. A ​CircuitManagementPayload​ request is valid if the following things are true:
● The ​CircuitManagementPayload​ must contain a header and signature in bytes.

● The header in the payload must contain an action enum value, the public key of the
requester, and hash of the action associated with the payload.

● The action in the ​CircuitManagementPayload​ must match the enum action in the
payload.

● The signature must be valid for the bytes of the header and the requester public key
stored in the header.

b. The provided payload (a ​CircuitCreateRequest​) is valid if the following things are true:

● The new circuit has a unique name (the node is not part of an existing circuit with
that name). Circuit names do not need to be unique across all Splinter nodes. Two
sets of nodes can use the same circuit name if there is no overlap in members in the
circuit.

● The circuit definition includes the node ID in the circuit member list.

● For each service, every node in the service's allowed node list is also present in the
circuit member list.

● There is no other pending proposal for a circuit with the same name.

● The requester is registered for the Splinter node whose ID is in the
requester_node_id​ field of the ​CircuitManagementPayload​ header. The
requester is identified by the public key of the person who requested the new
gameroom (in this example, Alice).

● The requester has permission to submit circuit proposals from that Splinter node.

To verify the node's public key and proposal permission, the admin service checks the

© 2019 Cargill, Incorporated 30

key registry and key permissions manager.

● The key registry provides a way to look up details about a public key used to sign a
circuit proposal: the requester node ID (the "home node" of the requester and
location of that user's public key) and arbitrary metadata (represented as key/value
string pairs).

● The key permissions manager checks that a public key is authorized in a specific
role. In the case of "create circuit" requests, the signing public key must be
authorized for the "proposal" role.

2. If the request is valid, the Acme admin service creates a ​CircuitProposal​ and stores it in

the ​AdminServiceShared.pending_changes​ field. The protobuf is represented in YAML
format.

CircuitProposal:

 proposal_type: CREATE

 circuit_id: gameroom::acme-node-000::bubba-node-000::<UUIDv4>:

 circuit_hash: <hash of circuit>

 circuit_proposal:

circuit:

 gameroom::acme-node-000::bubba-node-000::<UUIDv4>:

 auth: trust

 members:

acme-node-000:

 endpoints:

 - tls://splinterd-node-acme:8044

bubba-node-000:
 endpoints:

 - tls://splinterd-node-bubba:8044

 roster:

 gameroom_acme-node-000:

 service_type: scabbard

 allowed_nodes:

 - acme-node-000

 arguments:

 - peer_services:

 - gameroom_bubba-node-000

 admin_keys:

 - <acme gameroomd public key>

 gameroom_bubba-node-000:

 service_type: scabbard

 allowed_nodes:

 - acme-node-000

 arguments:

© 2019 Cargill, Incorporated 31

 - peer_services:

 - gameroom_acme-node-000

 admin_keys:

 - <acme gameroomd public key>

 persistence: any

 durability: none

 routes: require_direct
 votes: []

 requester: <public key of requester>

 requester_node_id: acme-node-000

3. The Acme admin service creates a consensus proposal (a ​Proposal​ struct) with the

following contents:
● Proposal ID: the expected hash of the ​CircuitManagementPayload​ bytes

● Summary: the expected hash of the created ​CircuitProposal

● List of required verifiers

An admin service running on a Splinter node does not have a fixed (static) list of required
verifiers (services that must agree on a proposal through consensus). Instead, the admin
service specifies the required verifiers as a list of admin service IDs that belong to the
members of the proposed circuit, using a protobuf message called ​RequiredVerifiers​.
This list is stored in the consensus data of the consensus proposal.

The following protobuf, which is represented in YAML format, shows the consensus
proposal.

required_verifiers:

 verifiers:

- <admin::acme-node-000 as bytes>

- <admin::bubba-node-000 as bytes>

proposal:

 id: <hash of CircuitManagementPayload bytes>

 summary: <expected hash of the create CircuitProposal>

 consensus_data: <bytes of required verifiers>

© 2019 Cargill, Incorporated 32

Ⅰ-2.5.2. Acme node sends Circuit Create request to Bubba Bakery node
After the Acme node creates the ​CircuitProposal​, the ​CircuitManagmentPayload​ is sent to
the other members defined in the circuit. In this case, the only member is the admin service on
the Bubba Bakery node.

1. First, the Acme admin service wraps ​CircuitManagementPayload​ in a series of messages

to prepare it for sending across the Splinter network.

a. The payload is wrapped in an ​AdminMessage​, which is a service-level message. The
protobuf is represented in YAML format.

admin_message:
 message_type: PROPOSED_CIRCUIT,
 propose_circuit:
 circuit_payload: <circuit_managment_payload>
 expected_hash: <expected hash of CircuitProposal generated by payload>
 required_verifiers:< bytes of the required verifiers from proposal>

b. The ​AdminMessage ​is then wrapped in an ​AdminDirectMessage​, which enables the

message to be sent over the Splinter network from Acme's admin service to the Bubba
Bakery admin service (which has the service ID ​admin::bubba-node-000​).

admin_direct_message:

circuit: admin
sender: admin::acme-node-000
recipient: admin::bubba-node-000
payload: <serialized admin message>
correlation_id: 6f04e471-f33a-4f9f-ad6f-5f80ab627133

c. Next, the ​AdminDirectMessage​ is wrapped in a ​CircuitMessage​, which is the envelope

that wraps all circuit-specific messages, such as direct messages and service
connections.

circuit_message:
 message_type: ADMIN_DIRECT_MESSAGE
 payload: <serialized admin_direct_message>

d. In order to hide circuits from the network layer, which can be used without circuits, the

CircuitMessage​ is wrapped in a ​NetworkMessage​.

network_message:
 message_type: CIRCUIT
 payload: <serialized circuit_message>

2. The Acme admin service sends this message over the admin circuit to the Bubba Bakery

Splinter node.

© 2019 Cargill, Incorporated 33

Ⅰ-2.5.3. Bubba Bakery node receives Circuit Create request from Acme node
The Bubba Bakery Splinter node receives the network message from the Acme node and starts
the process of "unwrapping" the message with a series of dispatchers.

1. A dispatcher takes the message and passes it to the correct message handler based on the

message type of the message. Each dispatcher either handles the message or forwards the
message onto the next dispatcher.

a. The Bubba Bakery Splinter node passes the ​NetworkMessage​ to the network

dispatcher.

b. The network dispatcher unwraps the ​NetworkMessage​ to get the
CircuitMessage​, then sends it to the circuit dispatcher.

c. The circuit dispatcher unwraps the ​CircuitMessage​ to get the

AdminDirectMessage​, then passes it to the circuit handler for this type of
message, ​AdminDirectMessageHandler​.

2. The ​AdminDirectMessageHandler​ checks whether the ​AdminDirectMessage​ is valid.

An ​AdminDirectMessage​ message is valid if both the sender and the recipients of the
message are admin services (the service ID of each is of the form ​admin::<node_id>​).

3. If the ​AdminDirectMessage​ message is valid, the ​AdminDirectMessageHandler​ forwards it

to the Bubba Bakery admin service.

4. The Bubba Bakery admin service takes the ​AdminMessage​ out of the ​AdminDirectMessage

and inspects the ​AdminMessage​ to see if it contains ​AdminMessage::ProposedCircuit​.

If so, the admin service takes the ​CircuitManagmentPayload​ out of the ​ProposedCircuit
message and passes it to ​AdminServiceShared.pending_circuit_payloads.

Ⅰ-2.5.4. Bubba Bakery node validates CircuitManagmentPayload
The Bubba Bakery admin service validates the ​CircuitManagementPayload​ using the same
steps as in ​section Ⅰ-2.5.1​.

1. The admin service verifies that the ​CircuitManagementPayload​ and the included

CircuitCreateRequest​ are valid. (For details, see ​section Ⅰ-2.5.1, step 1​.)

2. If the request is valid, the admin service creates a ​CircuitProposal​ and stores it in the

AdminServiceShared.pending_changes​ field (see ​section Ⅰ-2.5.1, step 2​).

3. The admin service creates a consensus proposal (a ​Proposal​ struct) with the proposal ID,

summary, and the list of required verifiers. For more information, see ​section Ⅰ-2.5.1, step

© 2019 Cargill, Incorporated 34

3​.

Ⅰ-2.5.5. Acme and Bubba Bakery reach consensus
When the admin services have validated the proposal and consensus has reached agreement,
consensus will notify the admin services to commit the proposal. See ​Appendix B​ for more
information about consensus.

Ⅰ-2.6. Admin services commit pending circuit proposal
After the consensus notification, both admin services commit the ​CircuitProposal​. Now the
new circuit is officially pending, which means that the ​CircuitProposal​ is stored in the admin
services' state but the circuit is not yet available for communication. A pending circuit proposal is
also called an "open circuit proposal".

In the Gameroom example, the pending circuit ID specifies the application, the member nodes,
and a version 4 UUID, as in this example:

gameroom::​acme-node-000​::bubba-node-000::<UUIDv4>

Ⅰ-2.7. Admin services notify authorization handler of pending circuit
proposal
1. After the circuit proposal has been committed, the admin service on each node checks if

there are any registered application authorization handlers for the circuit management type
in the proposed circuit (​gameroom::acme-node-000::bubba-node-000::<UUIDv4>​). See
The Prequel, section P.3​, for more information on the registration process.

An application authorization handler manages the voting strategy for the application and
notifies the application of any events received from the admin service of the local Splinter
node. This handler registers with an admin service for a specific circuit management type
(also described in ​The Prequel, section P.3​).

2. If there are any registered application authorization handlers for the proposed circuit

management type, each admin service forwards the request to the local connected
Gameroom application authorization handler.

The notification is sent on a WebSocket connection.

{
 "eventType": "ProposalSubmitted",
 "message": {
 "proposal_type": "Create",
 "circuit_id": "gameroom::acme-node-000::bubba-node-000::<UUIDv4>",
 "circuit_hash": "...",
 "circuit": {

© 2019 Cargill, Incorporated 35

"circuit_id":"gameroom::acme-node-000::bubba-node-000::<UUIDv4>",
"authorization_type": "Trust",
"members": [{
 "node_id": "acme-node-000",
 "endpoint": "tls://splinterd-node-acme:8044"
 },
 {
 "node_id": "bubba-node-000",
 "endpoint": "tls://splinterd-node-bubba:8044"
 }
],
"roster": [{
 "service_id": "gameroom_acme-node-000",
 "service_type": "scabbard",
 "allowed_nodes": ["acme-node-000"],
 "arguments": {
 "peer_services": ["gameroom_bubba-node-000"],
 "admin_keys": [
 "<acme gameroomd public key>"
]
 }
 },
 {
 "service_id": "gameroom_bubba-node-000",
 "service_type": "scabbard",
 "allowed_nodes": ["bubba-node-000"],
 "arguments": {
 "peer_services": ["gameroom_acme-node-000"],
 "admin_keys": [
 "<acme gameroomd public key>"
]
 }
 }
],
"circuit_management_type": "gameroom",
"application_metadata":​ <metadata bytes defined by the application>​,
"persistence": "Any",
"durability": "None",
"routes": "Any"

 },
 "vote_record": [{}],
 "requester": "public_key_of_requester"
 "requester_node_id": "acme-node-000"
 }
}

© 2019 Cargill, Incorporated 36

Ⅰ-2.8. Gameroom daemons write notification to Gameroom database
When each Gameroom application authorization handler receives the gameroom proposal on
the WebSocket connection, it parses the information and adds it to several tables in the
Gameroom daemon's local database: ​gameroom​, ​gameroom_member​, ​gameroom_service​,
gameroom_proposal​, and ​gameroom_notification​.

Ⅰ-2.8.1. New ​gameroom​ table entry
First, the Gameroom application authorization handler adds a new entry to the ​gameroom​ table.
This table contains the information about the circuit definition, including the data that was
passed in the ​application_metadata​ field.

CREATE TABLE IF NOT EXISTS gameroom (

 circuit_id TEXT PRIMARY KEY,
 authorization_type TEXT NOT NULL,
 persistence TEXT NOT NULL,
 routes TEXT NOT NULL,
 durability TEXT NOT NULL,
 circuit_management_type TEXT NOT NULL,
 alias TEXT NOT NULL,
 status TEXT NOT NULL,
 created_time TIMESTAMP NOT NULL,
 updated_time TIMESTAMP NOT NULL
);

● circuit_id, authorization_type, persistence, routes, durability, ​and

circuit_management_type ​are extracted directly from the circuit proposal message that
is received from the Splinter daemon.

● alias​ ​is extracted by deserializing the application metadata in the circuit proposal
message. The alias is the gameroom name that Alice entered when creating the
gameroom in the Acme UI.

● status​ identifies the current status of the gameroom. In this case, it is set to ​pending
because the proposal to create this gameroom has not yet been accepted.

● created_time​ ​is when the gameroom entry was introduced in the table.

● updated_time​ is when the gameroom entry was last updated.

© 2019 Cargill, Incorporated 37

At the end of the operation, the ​gameroom​ table looks like this:

circuit_id authorization_type persistence routes durability

gameroom::acme-node-000::

bubba-node-000::<UUIDv4>

Trust Any Any None

circuit_management_type alias status created_time updated_time

gameroom Acme + Bubba pending <time entry was
created>

<time entry was
updated>

Ⅰ-2.8.2. New ​gameroom_member​ table entry
Next, the Gameroom application authorization handler adds a new entry to the
gameroom_member​ table. This table contains the information about the members of the circuit.

CREATE TABLE IF NOT EXISTS gameroom_member (
 id BIGSERIAL PRIMARY KEY,
 circuit_id TEXT NOT NULL,
 node_id TEXT NOT NULL,
 endpoint TEXT NOT NULL,
 status TEXT NOT NULL,
 created_time TIMESTAMP NOT NULL,
 updated_time TIMESTAMP NOT NULL,
 FOREIGN KEY (circuit_id) REFERENCES gameroom(circuit_id) ON DELETE CASCADE
);

● circuit_id, node_id, ​and ​endpoint ​are extracted directly from the circuit proposal

message received from the Splinter daemon.

● status​ identifies the current status of the member. In this case, it is set to ​pending
because the proposal to create the gameroom has not yet been accepted.

● created_time​ is when the gameroom member entry was introduced in the table.

● updated_time​ is when the gameroom member entry was last updated.

© 2019 Cargill, Incorporated 38

At the end of the operation, the ​gameroom_member​ table looks like this:

id circuit_id node_id

<auto generated id> gameroom::acme-node-000::bubba-node-000::<UUIDv4> acme-node-000

<auto generated id> gameroom::acme-node-000::bubba-node-000::<UUIDv4> bubba-node-000

endpoint status created_time updated_time

tls://splinterd-node-acme:8044 pending <time entry was
created>

<time entry was
updated>

tls://splinterd-node-bubba:8044 pending <time entry was
created>

<time entry was
updated>

Ⅰ-2.8.3. New ​gameroom_service​ table entry
The Gameroom application authorization handler adds a new entry to the ​gameroom_service
table, which contains the information about the services of the circuit.

CREATE TABLE IF NOT EXISTS gameroom_service (
 id BIGSERIAL PRIMARY KEY,
 circuit_id TEXT NOT NULL,
 service_id TEXT NOT NULL,
 service_type TEXT NOT NULL,
 allowed_nodes TEXT[][] NOT NULL,
 arguments JSON [] NOT NULL,
 status TEXT NOT NULL,
 created_time TIMESTAMP NOT NULL,
 updated_time TIMESTAMP NOT NULL,
 FOREIGN KEY (circuit_id) REFERENCES gameroom(circuit_id) ON DELETE CASCADE
);

● circuit_id, service_id, service_type, arguments ​and ​allowed_nodes ​are extracted

directly from the circuit proposal message received from the Splinter daemon.

● status​ identifies the current status of the service. In this case, it is set to ​pending
because the proposal to create the gameroom has not yet been accepted.

● created_time​ ​is when the gameroom service entry was introduced in the table.

● updated_time​ ​is when the gameroom service entry was last updated.

© 2019 Cargill, Incorporated 39

At the end of the operation, the ​gameroom_service​ table looks like this:

id circuit_id service_id service_type

<auto generated id> gameroom::acme-node-000::

bubba-node-000::<UUIDv4>

gameroom_acme-node-000 scabbard

<auto generated id> gameroom::acme-node-000::

bubba-node-000::<UUIDv4>

gameroom_bubba-node-000 scabbard

allowed_nodes arguments status created_time updated_time

{"acme-node-000"} "peer_services": [
"gameroom_bubba-node-000"],
"admin_keys": ….

pending <time entry
was created>

<time entry
was updated>

{bubba-node-000} "peer_services": [
"gameroom_bubba-node-000"],
"admin_keys": ….

pending <time entry
was created>

<time entry
was updated>

Ⅰ-2.8.4. New ​gameroom_proposal​ table entry
The Gameroom application authorization handler adds a new entry to the ​gameroom_proposal
table, which contains information about the gameroom proposal.

CREATE TABLE IF NOT EXISTS gameroom_proposal (

 id BIGSERIAL PRIMARY KEY,
 proposal_type TEXT NOT NULL ,
 circuit_id TEXT NOT NULL,
 circuit_hash TEXT NOT NULL,
 requester TEXT NOT NULL,
 requester_node_id TEXT NOT NULL,
 status TEXT NOT NULL,
 created_time TIMESTAMP NOT NULL,
 updated_time TIMESTAMP NOT NULL,
 FOREIGN KEY (circuit_id) REFERENCES gameroom(circuit_id) ON DELETE CASCADE
);

● circuit_id, proposal_type, circuit_hash, requester ​and ​requester_node_id ​are

extracted directly from the circuit proposal message received from the Splinter daemon.

● status​ identifies the current status of the proposal. In this case, it is set to ​pending
because the proposal to create the gameroom has not yet been accepted.

● created_time​ ​is when the gameroom proposal entry was introduced in the table.

● updated_time​ is when the gameroom proposal entry was last updated.

© 2019 Cargill, Incorporated 40

At the end of the operation, the ​gameroom_proposal​ table looks like this:

id circuit_id proposal_type circuit_hash

<auto generated id> gameroom::acme-node-000::

bubba-node-000::<UUIDv4>

Create <hash of circuit
definition>

requester requester node id status created_time updated_time

<public key of requester> acme-node-000 pending <time entry
was created>

<time entry
was updated>

Ⅰ-2.8.5. New ​gameroom_notification​ table entry
Finally, the Gameroom application authorization handler adds a new entry to the
gameroom_notification​ table. This table contains information about events that the UI would
like to notify the users about.

CREATE TABLE IF NOT EXISTS gameroom_notification (

 id BIGSERIAL PRIMARY KEY,
 notification_type TEXT NOT NULL,
 requester TEXT NOT NULL,
 requester_node_id TEXT NOT NULL,
 target TEXT NOT NULL,
 created_time TIMESTAMP NOT NULL,
 read BOOLEAN NOT NULL
);

● notification_type ​identifies the type of event that generated this notification (in this

case, a ​gameroom_proposal ​event).

● requester ​identifies the public key of the user that generated the event (in this case,
Alice’s public key).

● target​ is the identifier for the resource that was affected by the event (in this case, the
circuit_id)​.

● created_time​ is when the notification entry was introduced in the table.

● read​ identifies whether the user has seen that notification.

© 2019 Cargill, Incorporated 41

At the end of the operation, the ​gameroom_notification​ table looks like this:

id notification_type requester requester_node_id

<auto generated id> gameroom_proposal <Alice’s public key> acme-node-000

target created_time read

gameroom::acme-node-000::bubba-node-000::<UUIDv4> <time entry was created> f

Ⅰ-2.9. Alice sees notification that gameroom invitation was sent

1. After the Acme Gameroom application authorization handler fills in the

gameroom_notification​ table, the Acme Gameroom REST API uses a WebSocket
connection to tell the Acme UI about the new notification.

{

 "namespace": "notifications",

 "action": "listNotifications"

 }

2. When the Acme UI receives that message, it sends a request to the Gameroom REST API

to fetch a list of unread notifications from the database tables.

GET /notifications

3. The Acme Gameroom REST API responds with the list of unread notifications.

{

 "data": [
 {
 "id": <auto generated id>,
 "notification_type": "gameroom_proposal",
 "requester": <Alice’s public key>,

“node_id”: “acme-node-000”,
 "target": "gameroom::acme-node-000::bubba-node-000::<UUIDv4>",
 "timestamp": <time entry was created>,
 "read": false
 }
],
 "paging": {
 "current": "api/notifications?limit=100&offset=0",
 "offset": 0,
 "limit": 100,
 "total": 1,

© 2019 Cargill, Incorporated 42

 "first": "api/notifications?limit=100&offset=0",
 "prev": "api/notifications?limit=100&offset=0",
 "next": "api/notifications?limit=100&offset=0",
 "last": "api/notifications?limit=100&offset=0"
 }
}

4. The Acme UI updates its internal store with the new list of notifications. The notification that
the user sees depends on whether they're the requester or an invitee.

● For the requester (Alice), the Acme UI displays a toast notification saying that the

invitation has been sent.

● An invitee sees a bell notification icon with number (a red badge that shows the number
of unread notifications). If an invitee is not logged in, the notification will appear on the
Gameroom home screen when the user logs in. For example, when Bob logs in, the
Bubba Bakery UI will request the list so it can display the notification icon and the
number on the home screen.

© 2019 Cargill, Incorporated 43

Ⅰ-3. Behind scene 3: Bob logs into Bubba Bakery's Gameroom
application
When Bob logs in, the Bubba Bakery UI works with ​gameroomd​ and Gameroom REST API to
check his user credentials and build the Bubba Bakery Gameroom home page. This process is
almost identical to Alice's login process. The only difference is that the Bubba Bakery
Gameroom home page will display a notification about his invitation from Alice.

Ⅰ-3.1. Bubba Bakery UI sends authorization request to Gameroom REST
API
This process is the same as the Acme process in ​section Ⅰ-1.1​. For Bob, the general process
looks like this:

When Bob clicks ​Log in​, the Bubba Bakery Gameroom UI hashes the password, then sends
an authorization request to the Bubba Bakery Gameroom daemon, ​gameroomd​. The request is
handled by the Gameroom REST API, which is a part of ​gameroomd​.

POST /users/authenticate

{

 email: "bob@bubbabakery.com",

 hashedPassword: "2b944c69...c11fcf9c"

}

As mentioned earlier, the UI does not reveal the user's password to the REST API because the
password is used to encrypt signing keys.

© 2019 Cargill, Incorporated 44

Ⅰ-3.2. Bubba Bakery Gameroom REST API authorizes the login
This process is the same as the Acme process in ​section ​Ⅰ-​1.2​. For Bob, the general process
looks like this:

When the Gameroom REST API receives the authorization request for Bob, it re-hashes the
password sent from the browser and compares the email and hashed password to Bob's entry
in the Bubba Bakery Gameroom database. If they match, authentication was successful.

The ​gameroom_user​ table in the Gameroom database has the following schema:

CREATE TABLE IF NOT EXISTS gameroom_user (

 email TEXT PRIMARY KEY,

 public_key TEXT NOT NULL,

 encrypted_private_key TEXT NOT NULL,

 hashed_password TEXT NOT NULL

);

Bob's public and private key pair was created before registration and was added to the Bubba
Bakery Gameroom database when Bob registered (see ​The Prequel, section P.2​). The
database has the following entry:

email hashed_password public_key encrypted_private_key

bob@bubbabakery.com 4c825b14...534bfc25 b1834871...2914a7f4 du+XOOyVy...nkO/NiHcn

© 2019 Cargill, Incorporated 45

Ⅰ-3.3. Bubba Bakery Gameroom REST API returns login success
response
This process is the same as the Acme process in ​section Ⅰ-1.3​. For Bob at Bubba Bakery, the
general process looks like this:

If the user authentication was successful, the Gameroom REST API sends a response to the
Bubba Bakery UI that contains Bob's public key and encrypted private key.

{
email: “bob@bubbabakery.com”,
publicKey: “b1834871...2914a7f4”,
encryptedPrivateKey: ​"\"{\\\"iv\\\":​...​ZCyV\\\"}\""​,

}

Next, the UI must gather information for the list of gamerooms, invitations, and notifications that
Bob will see on the Bubba Bakery home page.

© 2019 Cargill, Incorporated 46

Ⅰ-3.4. Bubba Bakery UI requests list of existing gamerooms
As part of building the Bubba Bakery home screen for Bob, the UI requests the list of Bob's
gamerooms. This process is the same as the Acme process in ​section Ⅰ-1.4​.

1. The Bubba Bakery UI makes a call to the Gameroom REST API for the list of existing

gamerooms.

GET /gamerooms

2. The Bubba Bakery Gameroom REST API returns an empty list, because there are no

existing gamerooms in the Bubba Bakery Gameroom's PostgreSQL database.

{

"data": [],
"paging": {

 "current": "/gamerooms?limit=100&offset=0",
 "offset": 0,
 "limit": 100,
 "total": 0,
 "first": "/gamerooms?limit=100&offset=0",
 "prev": "/gamerooms?limit=100&offset=0",
 "next": "/gamerooms?limit=100&offset=0",
 "last": "/gamerooms?limit=100&offset=0"

}
}

© 2019 Cargill, Incorporated 47

Ⅰ-3.5. Bubba Bakery UI requests list of gameroom invitations
As part of building the Bubba Bakery home screen for Bob, the UI requests the list of Bob's
invitations. This process is different from the Acme process in ​section Ⅰ-1.5​, because Bob has
a new invitation from Alice.

1. The Bubba Bakery UI makes a call to the Gameroom REST API for Bob's list of invitations

(also called ​circuit proposals​).

GET /proposals

2. The Bubba Bakery Gameroom REST API returns a list that includes Alice's invitation.

{
"data": [
{

 "proposal_id": <auto-generated id>,
 "circuit_id": "gameroom::acme-node-000::bubba-node-000::<UUIDv4>",
 "circuit_hash": <hash of circuit definition>,
 "members": [
 {
 "node_id": "acme-node-000",
 "endpoint": "tls://splinterd-node-acme:8044"
 },

 {
 "node_id": "bubba-node-000",
 "endpoint": "tls://splinterd-node-bubba:8044"
 }
],
 "requester": <Alice’s public key>,

 "requester_node_id": acme-node-000,
 "created_time": <time entry was created>,
 "updated_time": <time entry was updated>
 }

],

"paging": {
 "current": "/proposals?limit=100&offset=0",
 "offset": 0,
 "limit": 100,
 "total": 1,
 "first": "/proposals?limit=100&offset=0",
 "prev": "/proposals?limit=100&offset=0",
 "next": "/proposals?limit=100&offset=0",
 "last": "/proposals?limit=100&offset=0"

}
}

© 2019 Cargill, Incorporated 48

Ⅰ-3.6. Bubba Bakery UI queries for unread notifications
While building the Bubba Bakery home screen, the UI also requests the list of Bob's unread
notifications.

When the circuit proposal (Alice's invitation) was created, the Bubba Bakery admin service
stored Bob's notification information in the Gameroom database, with the ​read​ field set to
"false". For the details of how the Gameroom tables were updated during circuit creation, see
section Ⅰ-2.8​ and ​section Ⅰ-2.9​.

1. The Bubba Bakery UI makes a call to the Bubba Bakery Gameroom REST API for the list of

Bob's unread notifications.

GET /notification

2. The Gameroom REST API queries the ​gameroom_notification​ table and sends Bob's

notifications to the Bubba Bakery UI. The notification for Alice's invitation looks like this:

{

"data": [
{

“id”: <auto-generated id>,
“notification_type”: “gameroom_proposal”,
“org”: “”,
“requester”: <Alice’s public key>,
“node_id”: "acme-node-000",
“target”:

"gameroom::acme-node-000::bubba-node-000::<UUIDv4>",
“timestamp”: <time entry was created>,
“read”: <boolean; false means not read>,

}
],

“paging”: {
 "current": "/notifications?limit=100&offset=0",
 "offset": 0,
 "limit": 100,
 "total": 1,
 "first": "/notifications?limit=100&offset=0",
 "prev": "/notifications?limit=100&offset=0",
 "next": "/notifications?limit=100&offset=0",
 "last": "/notifications?limit=100&offset=0"

},

}

At this point, the Bubba Bakery Gameroom UI has the information it needs to display Bob's
home screen.

© 2019 Cargill, Incorporated 49

Ⅰ-4. Behind Scene 4: Bob checks his notifications
On Bob's Bubba Bakery home screen, the UI displays Bob's existing gamerooms on the left
(none, at this point) and notifications in the upper right (as a bell icon).

Bob's public key is not listed as the requester on the ​gameroom_proposal​ notification, so the
Bubba Bakery UI displays the notification icon with a red badge that indicates an unread
notification.

1. When Bob clicks the bell icon, the UI shows his unread notifications.

2. When Bob clicks on his notification, the Bubba Bakery UI calls the Bubba Bakery

Gameroom REST API to update the selected notification (to show that Bob has read it).
After the update, this notification will no longer show up as a new notification in the UI.

PATCH /notifications/{notification_id}/read

This call updates the notification’s entry ​read​ field in the Bubba Bakery database’s
gameroom_notification​ table from false to true. For more information on this table, see
section Ⅰ-2.8.5​.

© 2019 Cargill, Incorporated 50

3. After successfully updating the notification, the Bubba Bakery Gameroom REST API

responds with the entire notification object.

{
 "data": [
 {
 "id": <auto generated id>,
 "notification_type": "gameroom_proposal",
 "requester": <Alice’s public key>,

“requester_node_id”: “acme-node-000”,
 "target": "gameroom::acme-node-000::bubba-node-000::<UUIDv4>",
 "timestamp": <time entry was created>,
 "read": true
 }
]
}

© 2019 Cargill, Incorporated 51

Ⅰ-5. Behind Scene 5: Bob accepts Alice’s invitation
When Bob accepts Alice's invitation, the Bubba Bakery UI sends his "yes" vote to the
Gameroom REST API, which forwards it to Splinter REST API. After the vote is validated, the
admin service creates the circuit in Splinter state and tells the Gameroom daemon that the
circuit is available.

Next, the Bubba Bakery admin service notifies the Acme node that it's ready to create services.
After the Acme node responds (described in "​Behind Scene 6​"), the Bubba Bakery admin
service initializes its scabbard service for the new gameroom. Scabbard is the Splinter service
for Gameroom that includes the ​Sawtooth Sabre transaction handler​ and ​Hyperledger Transact​,
using two-phase commit consensus to agree on state. Gameroom uses this service to store the
XO smart contract and manage XO state.

Finally, the Gameroom daemon updates the gameroom status in its local database from
"Accepted" to "Ready".

Ⅰ-5.1. Bubba Bakery UI submits Accept Invitation request to Gameroom
REST API

When Bob clicks on the Accept button, the Bubba Bakery Gameroom UI sends a vote (also
called a "circuit vote request") to the Gameroom REST API.

POST /proposals/vote
{
 ​"circuit_id":​ ​"gameroom::acme-node-000::bubba-node-000::<UUIDv4>",

 ​"circuit_hash":"8cd2bfcf3f4259b9785a723e19b4bb4d5cc0206e",
 ​"vote":​ ​"Accept"
 ​}

© 2019 Cargill, Incorporated 52

https://sawtooth.hyperledger.org/docs/sabre/releases/latest/sabre_transaction_family.html
https://docs.rs/transact/

Ⅰ-5.2. Gameroom REST API submits Proposal Accept request to Splinter
REST API

1. When the Bubba Bakery Gameroom REST API receives the vote request, it uses that

information to create a ​CircuitManagementPayloa​d, which will eventually be sent to the
Bubba Bakery Splinter daemon. 

2. Before the payload can be sent, the Bubba Bakery UI must sign the bytes of the

CircuitManagementPayload​ header.  

The following example shows a YAML representation of the ​CircuitManagementPayload
that the Gameroom REST API creates.

Circuit proposal vote:

circuit_id: gameroom::acme-node-000::bubba-node-000::<UUIDv4>

circuit_hash: <sha256 hash of the circuit definition of the proposed circuit> 

vote: Accept  

Header: 

Action: CIRCUIT_PROPOSAL_VOTE

requester: <public key of requester> // left empty by the REST API

payload_sha512: <sha512 hash of the circuit proposal vote described above>

requester_id: <ID of the Splinter node that the requester is registered to>

 CircuitManagmentPayload​:

header: <bytes of header described above>

circuit_proposal_vote: <circuit proposal vote described above>

signature: <signature of bytes of the header> // left empty by the REST API

Note that the Gameroom REST API does not fill in the ​requester​ field in the header or the
signature​ field in the ​CircuitManagementPayload​.

3. The Bubba Bakery Gameroom REST API serializes the payload and sends the bytes as a

response to the UI.  

{

"data": { “Payload_bytes”: <bytes of the CircuitManagementPayload> }

}

© 2019 Cargill, Incorporated 53

4. After receiving the response from the Gameroom REST API, the Bubba Bakery UI
deserializes the ​CircuitManagementPayload​. It adds the requester's public key to the
header (in this case, Alice is the requester), serializes the header, signs the header bytes,
and adds the signature to the payload. Finally, the UI serializes the complete payload. 

5. The Bubba Bakery UI submits the bytes of the signed payload to the Gameroom REST

API.   

POST /submit

Content-Type: application/octet-stream

<bytes of the signed CircuitManagementPayload>

6. The Bubba Bakery Gameroom REST API forwards the payload to the Bubba Bakery
Splinter daemon.​   

POST /admin/submit  

Content-Type: application/octet-stream

<bytes of the signed CircuitManagementPayload>

7. The Splinter REST API responds with the status "​202 Accepted​" and the Bubba Bakery
admin service processes the vote.

8. The Bubba Bakery REST API forwards the "​202 Accepted​" response to the Bubba Bakery
UI.

© 2019 Cargill, Incorporated 54

Ⅰ-5.3. Bubba Bakery node votes "yes" (validates the vote)
1. The Bubba Bakery admin service (​admin::bubba-node-000​) receives the

CircuitManagmentPayload​ containing a ​CircuitProposalVote​ from the Splinter REST
API, and adds it to its pending circuit payloads queue.

CircuitProposalVote:

circuit_id: gameroom::acme-node-000::bubba-node-000::<UUIDv4>

circuit_hash: <hash of circuit>

 vote: ACCEPT

2. The Bubba Bakery admin service validates ​CircuitManagementPayload​ using the same

validation process described earlier (see ​section Ⅰ-2.5.1, step 1​).

It also validates the provided payload (a ​CircuitProposalVote​) using vote-specific
validation rules. ​CircuitProposalVote​ is valid if the following things are true:

● There is a pending CircuitProposal in admin state with the same circuit ID as in the
CircuitProposalVote

● The hash of the stored pending CircuitProposal is the same as the ​circuit_hash​ in
CircuitProposalVote

● CircuitProposalVote vote field is set to either the Vote enum ACCEPT or REJECT
● The public key belongs to a node in the circuit, and that node is allowed to submit the

vote (see below).
● CircuitProposal does not already contain a vote from that node

To verify the node's public key and voting permission, the admin service checks the key
registry and key permissions manager.

● The key registry provides a way to look up details about a public key used to sign a
circuit proposal: the requester node ID (the "home node" of the requester and location of
that user's public key) and arbitrary metadata (represented as key/value string pairs).

● The key permissions manager checks that a public key is authorized in a specific role.
In the case of circuit proposal votes, the signing public key must be authorized for the
role "voter".

3. If the request is valid, the admin service makes a copy of the existing ​CircuitProposal​,
adds a vote record to it, and stores it in ​AdminServiceShared.pending_changes​. The
protobuf is represented in YAML format.

CircuitProposal:

 proposal_type: CREATE

 circuit_id: gameroom::acme-node-000::bubba-node-000::<UUIDv4>:

 circuit_hash: <hash of circuit>

© 2019 Cargill, Incorporated 55

 circuit_proposal:

circuit:

 gameroom::acme-node-000::bubba-node-000::<UUIDv4>:

 auth: trust

 members:

acme-node-000:

 endpoints:

 - tls://splinterd-node-acme:8044

bubba-node-000:
 endpoints:

 - tls://splinterd-node-bubba:8044

 roster:

 gameroom_acme-node-000:

 service_type: scabbard

 allowed_nodes:

 - acme-node-000

 arguments:

 - peer_services:

 - gameroom_bubba-node-000

 admin_keys:

 - <acme gameroomd public key>

 gameroom_bubba-node-000:

 service_type: scabbard

 allowed_nodes:

 - acme-node-000

 arguments:

 - peer_services:

 - gameroom_acme-node-000

 admin_keys:

 - <acme gameroomd public key>

 persistence: any

 durability: none

 routes: require_direct

 circuit_management_type: gameroom

 votes:

 - public_key: <voter’s public key>

 vote: ACCEPT

 voter_node_id: bubba-node-000

 requester: <public key of requester>

 requester_node_id: acme-node-000

4. The admin service creates a new consensus ​Proposal​ for the updated ​CircuitProposal​.
(See ​section Ⅰ-2.5.1, step 3​, for the Proposal description.)

© 2019 Cargill, Incorporated 56

Ⅰ-5.4. Bubba Bakery node sends proposal accept vote to Acme node
1. After the Bubba node creates the updated ​CircuitProposal​, the

CircuitManagmentPayload​ is sent to the other members defined in the circuit --
specifically, the admin service on the Acme node ​(admin::acme-node-000​).

2. The Acme admin service receives the ​CircuitMangementPayload​ containing the

CircuitProposalVote​ (as described in ​section Ⅰ-5.3, step 1​), validates the payload (see
section Ⅰ-5.3, step 2​), and creates an updated ​CircuitProposal​ (see ​section Ⅰ-5.3, step
3​).

3. The nodes use consensus to agree to accept or reject the circuit proposal. See ​Appendix B

for more information on consensus agreement.

4. After consensus has completed its agreement on the proposal, it notifies the Bubba Bakery

admin service that both nodes have accepted the proposal. The Bubba Bakery admin
service then commits the updated ​CircuitProposal​.

Ⅰ-5.5. Bubba Bakery admin service checks for approval and creates a
circuit

1. When the ​CircuitProposal​ is committed, the Bubba Bakery admin service checks to see if

it contains the required number of ​ACCEPT​ votes to be added to Splinter state (the
SplinterState​ struct), where active circuits are stored.

The ​CircuitProposal​ must have a ​VoteRecord​ with a vote of ​ACCEPT​ from every member
of the proposed circuit definition, except for the requester (because submitting a circuit
proposal counts an accept vote).

2. If a vote exists for every member, the Bubba Bakery admin service adds the circuit defined

in the ​CircuitProposal​ to Splinter state. Once in Splinter state, the circuit is ready to
accept service connections and be used for communication.

3. After the circuit has been created, the Bubba Bakery admin service creates the scabbard

service using the service orchestrator (described in ​section Ⅰ-5.8​).

© 2019 Cargill, Incorporated 57

Ⅰ-5.6. Bubba Bakery admin service notifies Gameroom daemon of new
circuit
1. The Bubba Bakery admin service notifies the Bubba Bakery application authorization

handler that the circuit has been accepted.

{

 “eventType”: “ProposalAccepted”,

 “message”: {

 “proposal_type”: “Create”,

 “circuit_id”: “gameroom::acme-node-000::bubba-node-000::<UUIDv4>”,

 “circuit_hash”: “...”,

 “circuit”: {

"circuit_id": "gameroom::acme-node-000::bubba-node-000::<UUIDv4>",

"authorization_type": "Trust",

"members": [{

 "node_id": "acme-node-000",

 "endpoint": "tls://splinterd-node-acme:8044"

 },

 {

 "node_id": "bubba-node-000",

 "endpoint": "tls://splinterd-node-bubba:8044"

 }

],

"roster": [{

 "service_id": "gameroom_acme-node-000",

 "service_type": "scabbard",

 "allowed_nodes": ["acme-node-000"]

 "arguments": {

 "peer_services": ["gameroom_bubba-node-000"]

 "admin_keys": ["<acme gameroomd public key>"]

 }

 },

 {

 "service_id": "gameroom_bubba-node-000",

 "service_type": "scabbard",

 "allowed_nodes": ["bubba-node-000"]

 "arguments": {

 "peer_services": ["gameroom_acme-node-000"]

 "admin_keys": ["<acme gameroomd public key>"]

 }

 }

],

"circuit_management_type": "gameroom",

"application_metadata": [...],

"persistence": "Any",

© 2019 Cargill, Incorporated 58

"durability": "None",

"routes": "Any"

 },

 “vote_record”: [{

 “public_key”: “<publickeyofvoter>”,

 “vote”: “Accepted”

 "voter_node_id": “bubba-node-000”

 }],

 “requester”: “<publickeyofrequester>”

 “requester_node_id”: “acme-node-000”

 }

}

2. When the application authorization handler receives this message, it updates the database

to change the status of the proposal, gameroom, members and services from “Pending” to
“Accepted”.

At the end of the database transaction, the gameroom database has the following updates:

● gameroom​ table:

circuit_id authorization_type persistence routes durability

gameroom::acme-node-000::

bubba-node-000::<UUIDv4>

Trust Any Any None

circuit_management_type alias status created_time updated_time

gameroom Acme + Bubba accepted <time entry
was created>

<time status
was updated>

● gameroom_member​ table:

id circuit_id node_id endpoint

<auto

generated id>

gameroom::acme-node-000::

bubba-node-000::<UUIDv4>

acme-node-000 tls://splinterd-node-acme:8044

<auto

generated id>

gameroom::acme-node-000::

bubba-node-000::<UUIDv4>

bubba-node-000 tls://splinterd-node-bubba:8044

status created_time updated_time

accepted <time entry was created> <time the status was updated>

accepted <time entry was created> <time the status was updated>

© 2019 Cargill, Incorporated 59

● gameroom_service ​table:

id circuit_id service_id service_type

<auto generated id> gameroom::acme-node-000::

bubba-node-000::<UUIDv4>

gameroom_acme-node-000 scabbard

<auto generated id> gameroom::acme-node-000::

bubba-node-000::<UUIDv4>

gameroom_bubba-node-000 scabbard

allowed_nodes arguments status created_time updated_time

{"acme-node-000"} "peer_services": [
"gameroom_bubba-node-000"
],
"admin_keys": ….

accepted <time entry
was created>

<time status
was updated>

{bubba-node-000} "peer_services": [
"gameroom_bubba-node-000"
],
"admin_keys": ….

accepted <time entry
was created>

<time status
was updated>

● gameroom_proposal​ table:

id circuit_id proposal_type circuit_hash

<auto generated id> gameroom::acme-node-000::

bubba-node-000::<UUIDv4>

Create <hash of circuit
definition>

3. Finally, the application authorization handler updates the ​gameroom_notification​ table to

tell the UI that the gameroom proposal has been accepted.

id notification_type requester requester_node_id

<auto generated id> proposal_accepted <Bob’s public key> bubba-node-000

target created_time read

gameroom::acme-node-000::

bubba-node-000::<UUIDv4>

<time entry was
created>

false

© 2019 Cargill, Incorporated 60

Ⅰ-5.7. Bubba Bakery admin service sends "ready to create services" to
Acme
Before the Bubba Bakery admin service can initialize its scabbard service on the new circuit, it
needs to know that the Acme Splinter node has also created the circuit on the Acme side
(added the circuit that is defined in the ​CircuitProposal​ to Splinter state). The Acme process
will be described in the next chapter (​section Ⅰ-6​).

This information is required because when a Splinter service connects to its own Splinter node
(the node that it is allowed to connect to), that Splinter node sends a message to the other
connected Splinter nodes on the new circuit that the service is available. This message cannot
be sent until the Splinter node (in this case, the Acme node) has created the circuit.

If the circuit was not yet created on the other Splinter node (or nodes), the message would be
dropped. This node would not be able to communicate with the other node's service after the
circuit is created, because it wouldn't know where that service exists.

1. To notify the Acme admin service that the Bubba Bakery node is ready to initialize its

service, the Bubba Bakery admin service sends an ​AdminMessage​ with the message type
MEMBER_READY​ and a "member ready" message that contains the circuit ID and Bubba
Bakery's node ID.

admin_message:

 message_type: MEMBER_READY,

 member_ready:

 circuit_id: gameroom::acme-node-000::bubba-node-000::<UUIDv4>
 member_node_id: bubba-node-000

2. The Bubba Bakery admin service waits for Acme to respond with a "member ready"

message. (The next section describes how the Bubba Bakery node initializes its services.)

© 2019 Cargill, Incorporated 61

Ⅰ-5.8. Bubba Bakery admin service initializes scabbard service
After the circuit is created (described in ​section Ⅰ-5.5​) and all members are ready to create
services (covered in ​section Ⅰ-5.7​), the Bubba Bakery admin service makes a call to the
service orchestrator to initialize the scabbard service for the new gameroom. As described
above, scabbard is the Splinter service for Gameroom that includes the ​Sawtooth Sabre
transaction handler​ and ​Hyperledger Transact​, using two-phase commit consensus to agree on
state. Gameroom uses this service to store the XO smart contract and manage XO state.

1. The Bubba Bakery admin service checks which services are allowed to run on its node. In

this case, the Bubba Bakery node (​bubba-node-000​) is allowed to run the ​scabbard​ service
with service ID ​gameroom_bubba-node-000​.

2. The admin service creates a ​ServiceDefinition​ for ​gameroom_bubba-node-000​, which is

the scabbard service on the Bubba Bakery Splinter node.

ServiceDefinition {
 circuit: "gameroom::acme-node-000::bubba-node-000::<UUIDv4>",
 service_id: "gameroom_bubba-node-000",
 service_type: "scabbard",
}

3. The admin service passes the service definition, along with the arguments defined in the

CircuitProposal​ for that service, to the service orchestrator’s ​initialize_service
method to initialize the scabbard service.

4. ServiceOrchestrator​ uses structs that implement the ​ServiceFactory​ trait to create new

services. An orchestrator can have multiple factories. First, the orchestrator must determine
which factory can create a scabbard service (in this case, the ​ScabbardFactory​). Then the
orchestrator creates a new instance of the scabbard service using that factory, the service
definition, and the service arguments.

5. After the scabbard service has been created, the orchestrator starts the service and adds it

to its internally managed list of services. When starting the service, the orchestrator creates
a ​StandardServiceNetworkRegistry​ (used to register the service with the node) and
passes it to the service; the scabbard service then registers, which provides it with a
StandardServiceNetworkSender​ that it will use to send direct messages to other services.

© 2019 Cargill, Incorporated 62

https://sawtooth.hyperledger.org/docs/sabre/releases/latest/sabre_transaction_family.html
https://sawtooth.hyperledger.org/docs/sabre/releases/latest/sabre_transaction_family.html
https://docs.rs/transact/

Ⅰ-5.9. Bubba Bakery Gameroom daemon updates gameroom status in
database

At this point, the new service is running and ready to receive smart contracts.

1. The Bubba Bakery admin service sends a CircuitReady notification to the Gameroom

daemon's application authorization handler to let it know that the circuit is created and its
services are ready.

{

 “eventType”: “CircuitReady”,

 “message”: {

 “proposal_type”: “Create”,

 “circuit_id”: “gameroom::acme-node-000::bubba-node-000::<UUIDv4>”,

 “circuit_hash”: “...”,

 “circuit”: {

"circuit_id": "gameroom::acme-node-000::bubba-node-000::<UUIDv4>",
"authorization_type": "Trust",
"members": [{
 "node_id": "acme-node-000",
 "endpoint": "tls://splinterd-node-acme:8044"
 },
 {
 "node_id": "bubba-node-000",
 "endpoint": "tls://splinterd-node-bubba:8044"
 }
],

"roster": [{
 "service_id": "gameroom_acme-node-000",
 "service_type": "scabbard",
 "allowed_nodes": ["acme-node-000"]
 "arguments": {
 "peer_services": ["gameroom_bubba-node-000"]
 "admin_keys": ["<acme gameroomd public key>"]
 }

 },
 {
 "service_id": "gameroom_bubba-node-000",
 "service_type": "scabbard",
 "allowed_nodes": ["bubba-node-000"]
 "arguments": {
 "peer_services": ["gameroom_acme-node-000"]
 "admin_keys": ["<acme gameroomd public key>"]
 }

 }
],

© 2019 Cargill, Incorporated 63

"circuit_management_type": "gameroom",
"application_metadata": [...],
"persistence": "Any",
"durability": "None",
"routes": "Any"

 },

 “vote_record”: [{

 “public_key”: “<publickeyofvoter>”,

 “vote”: “Accepted”

 "vote_node_id": "bubba-node-000"

 }],

 “requester”: “<publickeyofrequester>”

 "requester_node_id": "acme-node-000"

 }

}

2. When the authorization handler receives the ​CircuitReady​ message, it changes the status

of the gameroom in the database from “Accepted” to “Ready”.

3. The authorization handler creates a new WebSocket to listen for events from the scabbard

service. These events are then captured, parsed, and uploaded into the gameroom
database. The process of reading state-change updates from Splinter and uploading them to
a local database is called "state delta export" and is done by the ​XoStateDeltaProcessor​.

The ​XoStateDeltaProcessor​ consumes ​StateChangeEvent payloads​, such as this
example:

{
 “type”: “Set”,

 “message”: {

 “key”: “<xo_address>”

 “value” [<bytes>]

 }

}

The bytes in value field are deserialized into the following CSV-format representation of the
XO game state:

“<game-name>,<game-board>,<game-state>,<player1-key>,<player2-key>”

For more information on the XO game state, see ​Appendix D​.

At this point, the circuit (Alice and Bob's gameroom) is ready. Next, the Acme Gameroom
daemon must submit the XO smart contract, which is the last step before the gameroom is
ready for Alice and Bob to play games. See ​section Ⅰ-6.6​ for an explanation of this process.

© 2019 Cargill, Incorporated 64

Ⅰ-6. Behind Scene 6: Alice sees that Bob accepted her invitation
Most of the steps this scene are similar to the Bubba Bakery steps described earlier. However,
one activity is unique — because the Acme node (Alice's node) requested the new circuit, it is
responsible for submitting the XO smart contract that will allow Alice and Bob to play tic tac toe
in the new gameroom.

Ⅰ-6.1. Acme admin service receives CircuitProposalVote from Bubba
Bakery admin service
When the Acme Splinter node receives the ​CircuitMangementPayload​ network message
containing the Bubba Bakery ​CircuitProposalVote​ (sent in ​section Ⅰ-5.4​), it "unwraps" the
message with a series of dispatchers. See ​section Ⅰ-2.5.3​ for the details of this process.

As described in ​section Ⅰ-5.4, step 3​, both nodes use consensus to agree on the circuit
proposal, After they agree, the Acme node commits the ​CircuitProposal​.

Ⅰ-6.2 Acme admin service checks for approval and creates circuit
When the ​CircuitProposal​ is committed, the Acme admin service checks that the Bubba
Bakery node has voted "yes" (see ​section Ⅰ-5.3​), then creates the circuit (adds the new circuit
to Splinter state). For the details of this process, see ​section Ⅰ-5.5​.

Ⅰ-6.3. Acme admin service notifies Acme Gameroom daemon of new
circuit
Once the circuit has been created, the Acme admin service tells the Acme application
authorization handler that the circuit has been accepted. When the application authorization
handler receives this message, it updates the database to change the status of the proposal,
gameroom, members and services from “Pending” to “Accepted”. See ​section Ⅰ-5.6​ for the
details of this process.

Ⅰ-6.4. Acme admin service tells Bubba Bakery that it is ready to create
services
The Acme node notifies the Bubba Bakery node that it is ready to initialize the Acme scabbard
service by sending an an ​AdminMessage​ with the message type ​MEMBER_READY​ and a "member
ready" message that contains the circuit ID and Acme's Splinter node ID.

The Acme node waits for all members to report a "member ready" message before proceeding.
For the details, see ​section Ⅰ-5.7​.

© 2019 Cargill, Incorporated 65

Ⅰ-6.5. Acme admin service creates scabbard service via service
orchestration
After the Acme node learns that all members are ready to create services, the Acme admin
service makes a call to the service orchestrator to initialize the scabbard service for the new
gameroom. See ​section Ⅰ-5.8​ for the details of this process.

Ⅰ-6.6. Acme Gameroom daemon submits Sabre transactions to add XO
smart contract
The Acme Gameroom daemon submits the XO smart contract by using the scabbard REST API
that is exposed by the Splinter daemon, ​splinterd​.

1. When the Acme Gameroom daemon’s application authorization handler receives the

CircuitReady​ notification from the admin service, it subscribes to scabbard and starts
listening for scabbard events. See ​Appendix C​ for the registration (event subscription)
process.

GET​ <circuit_id>/<service_id>/ws/subscribe

2. After a connection has been established, the application authorization handler prepares the

XO (tic tac toe) business logic by submitting the XO smart contract to the Acme scabbard
service.

The Acme gameroom daemon gets the following information from the ​CircuitProposal
that was just accepted (as described in ​section Ⅰ-5.9​):
● circuit_id​: unique ID of the new circuit that includes a version 4 UUID, such as

gameroom::acme-node-000::bubba-node-000::<UUIDv4>
● service_id​: ID of the scabbard service that is running on the local Splinter node; for

example: ​gameroom_acme-node-000
● scabbard_admin_keys​: scabbard admin keys that are stored in the circuit proposal’s

application metadata

The scabbard admin keys in Gameroom’s application metadata specify who is allowed to
add or modify smart contracts. When the circuit is initially defined (see ​section Ⅰ-2.3​), the
Gameroom daemon that creates the circuit definition (in this case, Acme's ​gameroomd​)
specifies its own public key as the scabbard admin. Since the Acme Gameroom daemon
has the only key that’s authorized to add smart contracts, it is responsible for adding the XO
smart contract.

3. To add the XO smart contract, the Acme Gameroom daemon creates a series of

transactions to set the permissions surrounding the smart contract and to submit the smart
contract itself. For more information, see the ​Sawtooth Sabre documentation​.

© 2019 Cargill, Incorporated 66

https://sawtooth.hyperledger.org/docs/sabre/releases/latest/index.html

4. The Acme Gameroom daemon bundles these transactions into a batch, serializes the batch,

and submits the serialized batch to the scabbard service on its local Splinter node:

POST /scabbard/<circuit_id>/<service_id>/batches

<serialized batch>

For more information about batches, see ​"Transactions and Batches" in the Sawtooth
Architecture documentation​.

5. When the Acme scabbard service receives this batch, it must agree with the Bubba Bakery

scabbard service to submit the smart contract. The Acme scabbard service performs the
following steps:

a. Deserializes the batch

b. Shares the batch with the other scabbard services in the circuit (in this case, the Bubba
Bakery scabbard service)

c. Creates a consensus proposal to send to the scabbard services of the other nodes (in
this case, Bubba Bakery's scabbard service) to agree on the batch

d. Waits for consensus to agree on the batch, then commits it to scabbard state. For
information on consensus, see ​Appendix B​.

After the scabbard services on both nodes have committed the smart contract, the Acme
Splinter node is done setting up the gameroom.

Ⅰ-6.7. Both Gameroom daemons update gameroom status in database
The application authorization handler listens for scabbard events using its state delta processor,
XoStateDeltaProcessor​. When the state delta processor receives an event with the address
of the uploaded XO contract it then sets the status of the gameroom to “​circuit_active​”

StateChangeEvent containing contact address

{

 “type”: “Set”,

 “message”: {

 “key”: “<xo_contract_address>”

 “value” [..]

 }

}

At this point, the state delta processor will begin listening for XO game state changes (defined in
Appendix D​).

© 2019 Cargill, Incorporated 67

https://sawtooth.hyperledger.org/docs/core/releases/latest/architecture/transactions_and_batches.html
https://sawtooth.hyperledger.org/docs/core/releases/latest/architecture/transactions_and_batches.html

Ⅰ-6.8. Acme Gameroom daemon notifies Acme UI
After the state delta processor sets the status of the gameroom to “​circuit_active​”, the Acme
Gameroom application authorization handler adds a new entry to the ​gameroom_notification
table:

id notification_type requester requester_node_id

<auto generated id> circuit_active <Alice’s public key> acme-node-000

target created_time read

gameroom::acme-node-000::bubba-node-000::<UUIDv4> <time entry was created> false

This notification is pushed to the Acme UI in the same way as the “​gameroom_proposal​”
notification. (See ​section Ⅰ-2.9​.)

© 2019 Cargill, Incorporated 68

Ⅰ-6.9. Alice sees notification that new gameroom is ready
After the notification is pushed to the Acme UI, Alice sees a new notification. The new
gameroom also appears on the dashboard menu.

When Alice clicks on the notification, she sees the details page for the new gameroom. (See
Behind Scene 4, Bob Checks his Notifications​.)

© 2019 Cargill, Incorporated 69

Act Ⅱ: Alice and Bob Play XO

Scene 1: Alice creates a new XO game

Alice returns from lunch and unlocks her computer. The GAMEROOM TAB is still

displayed.

Alice wants to play an XO game. She clicks ​New Game​. Alice sees the NEW GAME
DIALOG.

Alice enters “​alice_vs_bob​” as the game name. She clicks the SEND BUTTON.

© 2019 Cargill, Incorporated 70

The Gameroom application starts creating the game. Alice sees a new

"alice_vs_bob" entry with a SPINNER and the message "​CREATING GAME​".

A short period of time passes. When the game has been fully created, Alice sees

a blank game board and the message "​JOIN GAME​".

© 2019 Cargill, Incorporated 71

Scene 2: Alice makes the first move

Alice clicks ​JOIN GAME​ on the newly created game. The " ​alice_vs_bob​"
game board appears.

Alice stretches her hands and rubs her neck, preparing for her first

move.

She clicks the center spot on the board.

While the Gameroom application processes her move, Alice sees a

spinner in the center spot.

© 2019 Cargill, Incorporated 72

Time passes. The spinner disappears and an X appears in its place.

Alice's first move has been accepted.

Now she must wait for Bob’s first move.

Scene 3: Bob takes a turn

Eventually, Bob sees a RED NUMBER 1 on his bell icon, which means

that he has a notification.

© 2019 Cargill, Incorporated 73

Bob clicks on the bell icon. He sees that the game ​alice_vs_bob​ is
available in the ​Acme + Bubba​ gameroom.

He clicks on the notification text. The ​alice_vs_bob​ game board is
displayed.

Bob sees that Alice has taken the center space.

Muttering to himself, Bob makes his first move: he takes the top

right corner.

© 2019 Cargill, Incorporated 74

While the Gameroom application processes his move, Bob sees a spinner

in that space.

Soon, the spinner disappears. Bob's first move has been accepted.

The game continues, slowly, as Alice and Bob carefully analyze each

move.

© 2019 Cargill, Incorporated 75

Scene 4: Alice wins the game

It's the last move of the game.

Alice is biting her nails. Bob wipes his forehead.

Alice clicks on the winning spot. Suspense builds while she watches

the spinner.

© 2019 Cargill, Incorporated 76

The spinner disappears. Alice wins the game!

Bob sees Alice's winning move as a row of red Xs.

© 2019 Cargill, Incorporated 77

Scene 5: The triumph of Alice

In Alice's office, we hear CHEERS IN THE BACKGROUND.

Alice turns around and sees a crowd of co-workers who are celebrating

her win.

Scene 6: The tragedy of Bob

In Bob's office, there's a loud crash, then a scream. CUT TO BLACK.

© 2019 Cargill, Incorporated 78

Behind the Scenes: A Look at Act Ⅱ, Alice and Bob
Play XO
This section describes what really happens during Act Ⅱ. Although the actions of creating a
game and making moves are different, the underlying functions are similar to the process of
creating a gameroom.

Ⅱ-1. Behind Scene 1: Alice creates a new XO game
In Scene 1, Alice uses the Gameroom UI to create a new game named ​alice_vs_bo​b in the
acme + bubba​ gameroom. This section explains how the new game request is handled.

Ⅱ-1.1. Acme client sends ‘create game’ request to Gameroom REST API
1. When Alice clicks ​Create​ in the New Game screen, the Acme client creates an XO

transaction request payload for the creation request. (See ​Appendix D.2​ for information
about the XO transaction request format.)

 alice_vs_bob,create,

2. The Acme client wraps this transaction request payload in a ​sabre_payload​ message.

sabre_payload:
 action: "EXECUTE_CONTRACT"
 execute_contract:
 name: xo
 version: 0.3.3
 inputs:
 - 5b7349
 - 00ec00
 - 00ec01
 - 00ec02
 outputs:
 - 5b7349
 payload: b"alice_vs_bob,create,"

3. The Acme client bundles the Sabre payload into a batch, then serializes the batch into an
array of bytes. (For more information, see ​"Transactions and Batches" in the Sawtooth
Architecture documentation​.)

4. The Acme client sends the batch to the Acme Gameroom REST API.

POST /gamerooms/<circuid_id>/batches
Content-Type: application/octet-stream

<bytes of the batch containing the Sabre XO transaction>

© 2019 Cargill, Incorporated 79

https://sawtooth.hyperledger.org/docs/core/releases/latest/architecture/transactions_and_batches.html
https://sawtooth.hyperledger.org/docs/core/releases/latest/architecture/transactions_and_batches.html

5. After the transaction is sent, the Acme Gameroom UI displays a spinner and the message
"Creating Game", which shows that the game is in a pending state.

This state continues until the UI is notified that the new game has been committed to state
(described in ​section Ⅱ-1.6​).

Ⅱ-1.2. Acme Gameroom REST API sends ‘create' transaction to Acme
scabbard service
The Acme gameroom daemon passes the serialized batch (which contains the XO transaction)
to the Acme scabbard service, using the scabbard service's existing REST API route (as
described in ​section Ⅰ-6.6, step 4​).

POST /scabbard/<circuit_id>/<service_id>/batches
<serialized batch>

Ⅱ-1.3. Scabbard services use consensus to commit the new game
When the Acme scabbard service receives this batch, it commits the batch using a similar
process as adding the XO smart contract (described in ​section Ⅰ-6.6, step 5​).

1. The first steps are the same: The Acme scabbard service deserializes the batch, then

shares the batch with the Bubba Bakery scabbard service so that both nodes can use
consensus to agree to commit the new game.

2. Next, the scabbard services use the Sabre transaction handler to use the XO smart contract

to execute the transactions in the batch.

3. The remaining steps are the same as before: After the nodes agree on state using

two-phase commit consensus, both scabbard services commit the new XO game to
scabbard state in their local database.

© 2019 Cargill, Incorporated 80

Ⅱ-1.4. Scabbard services notify Gameroom daemons of state change
After the new XO game has been committed to scabbard state, both scabbard services send
the new XO game state to their gameroom daemon via a WebSocket connection.

An XO game state is defined as a string of comma-separated values:

 “<game-name>,<board-state>,<game-state>,<player1-key>,<player2-key>”

  The message to the gameroom daemon looks like this:

  {
 “eventType”: “Set”,
 “message”: {
 “key”: “<xo game address>”,
 “value”: b“alice_vs_bob,---------,P1-NEXT,,”
 }
}

Note that the values for ​player1-key​ and ​player2-key​ are empty. These fields are not set
until a player makes the first move. (This is a design choice for the XO smart contract; it's not an
inherent limitation of Splinter or the Gameroom application.)

Ⅱ-1.5. Gameroom daemons update gameroom status in database
When a Gameroom daemon receives the message from its scabbard service, the daemon
stores the state change in its local database.

1. Because this is a new game, the Gameroom daemon creates a new entry in the ​xo_games

table in the database.

The ​xo_games​ table has this definition:

xo_games (
 id BIGSERIAL PRIMARY KEY,
 circuit_id TEXT NOT NULL,
 game_name TEXT NOT NULL,
 player_1 TEXT NOT NULL,
 player_2 TEXT NOT NULL,
 game_status TEXT NOT NULL,
 game_board TEXT NOT NULL,
 created_time TIMESTAMP NOT NULL,
 updated_time TIMESTAMP NOT NULL,
 FOREIGN KEY (circuit_id) REFERENCES gameroom(circuit_id) ON DELETE CASCADE
); 

© 2019 Cargill, Incorporated 81

At the end of this operation, the ​xo_games​ table has the following entry:

id circuit_id game_name player_1

<auto generated id> gameroom::acme-node-000::

bubba-node-000::<UUIDv4>

alice_vs_bob

player_2 game_status game_board created_time updated_time

 P1-NEXT --------- <time entry was
created>

<time entry was
created>

2. The gameroom daemon also adds a new notification to the ​gameroom_notification​ table,

which indicates that a new game was created.

id notification_type requester requester_node_id

<auto generated id> new_game_created:alice_vs_bob <Alice’s public
key>

acme-node-000

target created_time read

gameroom::acme-node-000::bubba-node-000::<UUIDv4> <time entry was
created>

f

© 2019 Cargill, Incorporated 82

Ⅱ-1.6. Gameroom REST APIs tell clients that XO game is committed
1. After the Acme and Bubba Bakery Gameroom daemons fill in the ​gameroom_notification

tables, the Gameroom REST API uses a WebSocket connection to tell each UI about the
new notification.

{

 "namespace": "notifications",

 "action": "listNotifications"

}

2. When the UI receives that message, it sends a request to the Gameroom REST API to

fetch a list of unread notifications from the database tables.

GET /notifications

3. The Gameroom REST API responds with the list of unread notifications.

{

 "data": [
 {
 "id": <auto generated id>,
 "notification_type": "new_game_created:alice_vs_bob",
 "requester": <Alice’s public key>,

“node_id”: “acme-node-000”,
 "target": "gameroom::acme-node-000::bubba-node-000::<UUIDv4>",
 "timestamp": <time entry was created>,
 "read": false
 }
],
 "paging": {
 "current": "api/notifications?limit=100&offset=0",
 "offset": 0,
 "limit": 100,
 "total": 1,
 "first": "api/notifications?limit=100&offset=0",
 "prev": "api/notifications?limit=100&offset=0",
 "next": "api/notifications?limit=100&offset=0",
 "last": "api/notifications?limit=100&offset=0"
 }
}

4. Once the UI receives this notification, it asks the Gameroom REST API to fetch the list of
games in the ​Acme + Bubba​ gameroom.

GET /xo/gameroom::acme-node-000::bubba-node-000::<UUIDv4>/games

© 2019 Cargill, Incorporated 83

5. The Gameroom REST API responds with a list of games that includes the status of each
game. At this point, only the new ​alice_vs_bob​ game exists; no moves have been made.

{
 "data": [
 {
 "circuit_id": "gameroom::acme-node-000::bubba-node-000::<UUIDv4>",
 "game_name": "alice_vs_bob",
 "player_1": "",
 "player_2": "",
 "game_status": "P1-NEXT",
 "game_board": "---------",
 "created_time": <time entry was created>,
 "updated_time": <time entry was created>
 }
],
 "paging": {
 "current":​ "api/xo/gameroom::bubba-node-000::acme-node-000::<UUIDv4>/games?limit=100&offset=0",
 "offset": 0,
 "limit": 100,
 "total": 0,
 "first":​ "api/xo/gameroom::bubba-node-000::acme-node-000::<UUIDv4>/games?limit=100&offset=0",
 "prev":​ "api/xo/gameroom::bubba-node-000::acme-node-000::<UUIDv4>/games?limit=100&offset=0",
 "next":​ "api/xo/gameroom::bubba-node-000::acme-node-000::<UUIDv4>/games?limit=100&offset=0",
 "last":​ "api/xo/gameroom::bubba-node-000::acme-node-000::<UUIDv4>/games?limit=100&offset=0"
 }
}

6. The Acme Gameroom UI checks that the ​alice_vs_bob​ game is present in the list of games

received from the REST API. Because the game is in the list, the UI can now show the
game in a "committed" state (ready to play because the "create game" transaction has been
committed).

7. The Acme Gameroom UI replaces the spinner with a blank game board.

Alice can now click on the game board to start playing XO.

© 2019 Cargill, Incorporated 84

Ⅱ-​2. ​Behind Scene 2: Alice makes the first move
Each game move is handled the same way as the "create game" process described in ​section
Ⅱ-1​. This section summarizes these steps.

1. The Acme client submits the "take a space" transaction.

a. When Alice clicks the middle square in the XO board, the Acme client creates an XO
transaction request payload for taking the 5th space. See ​Appendix D.2​ for information
on XO game moves and the game board.

 alice_vs_bob,take,5,

b. As with game creation, the Acme client wraps this transaction request payload in a
sabre_payload​ message (see ​section Ⅱ-1.1, step 2​ for the message details).

c. The Acme client bundles the Sabre payload into a batch, then serializes the batch into

an array of bytes. (For more information, see ​"Transactions and Batches" in the
Sawtooth Architecture documentation​.)

d. The Acme client posts the batch to the Acme Gameroom REST API (see the details in

section Ⅱ-1.1, step 4​).

e. After the transaction is sent, the Acme Gameroom UI displays a spinner in the center
square until it is notified that the game has been updated in state.

2. The Acme Gameroom REST API forwards the XO ‘take’ transaction to the scabbard service

(see the details in ​section Ⅱ-1.2​).

3. The Acme and Bubba Bakery scabbard services use consensus (defined in ​Appendix B​) to

commit the move (as described in ​section Ⅱ-1.3​).

4. After Alice's first move has been committed to scabbard state, the scabbard services send

the new state to their gameroom daemons via a WebSocket connection (as described in
section Ⅱ-1.4​).

© 2019 Cargill, Incorporated 85

https://sawtooth.hyperledger.org/docs/core/releases/latest/architecture/transactions_and_batches.html
https://sawtooth.hyperledger.org/docs/core/releases/latest/architecture/transactions_and_batches.html

This message includes an updated game board that has Alice's X in the center square of the
game board and Alice's public key in the player1 field.

  {

 “eventType”: “Set”,

 “message”: {

 “key”: “<xo game address>”,

 “value”: b“alice_vs_bob,----x----,P2-NEXT,<Alice’s public key>,”

 }

}

Note that the last field (the key for player2) is empty. That field will be set when Bob makes
his first move.

5. When each Gameroom daemon receives the message, it updates the ​alice_vs_bob​ entry

in the ​xo_games​ table in the database (this entry was created in ​section Ⅱ-1.5​).

At the end of the operation, the ​xo_games​ table looks like this:

id circuit_id game_name player_1

<auto generated id> gameroom::acme-node-000::

bubba-node-000::<UUIDv4>

alice_vs_bob <Alice’s public key>

player_2 game_status game_board created_time updated_time

 P2-NEXT ----x---- <time entry was
created>

<time entry was
updated>

The gameroom daemon also adds a new notification to the ​gameroom_notification​ table
to indicate that the game was updated.

id notification_type requester requester_node_id

<auto generated id> game_updated:alice_vs_bob <Alice’s
public key>

acme-node-000

target created_time read

gameroom::acme-node-000::bubba-node-000::<UUIDv4> <time entry was created> f

© 2019 Cargill, Incorporated 86

6. The Gameroom REST APIs tell the clients that Alice's move has been committed and the

XO game state has been updated. This process is the same as in ​section II-1.6​, but the
notification details contain information about Alice's move.

a. After the Acme Gameroom daemon handler fills in the ​gameroom_notification​ table,
the Acme Gameroom REST API uses a WebSocket connection to tell the Acme UI about
the new notification (see the details in ​section Ⅱ-1.6, step 1​).

b. When the Acme UI receives that message, it asks the Gameroom REST API to fetch a

list of unread notifications from the database tables (using the same ​GET /notifications
request as in ​section Ⅱ-1.6, step 2​).

c. The Acme Gameroom REST API responds with the list of unread notifications, as

described in ​section Ⅱ-1.6, step 3​. At this point, however, the notification type is
game_updated​.

{

 "data": [
 {
 "id": <auto generated id>,
 "notification_type": "game_updated:alice_vs_bob",
 "requester": <Alice’s public key>,

“node_id”: “acme-node-000”,
 "target": "gameroom::acme-node-000::bubba-node-000::<UUIDv4>",
 "timestamp": <time entry was created>,
 "read": false
 }
],
 "paging": {

 … [SNIP] …

 }
}

d. Once the UI receives this notification, it sends a request to the Acme Gameroom REST

API to fetch the list of games in the ​Acme + Bubba​ gameroom (using the same ​GET
request as in ​section Ⅱ-1.6, step 4​).

e. The Acme Gameroom REST API returns the list of games and game data. At this point,

the ​alice_vs_bob​ game data shows that Alice is player_1, player_2 must move next,
and Alice's X is in the center square of the game board.

{
 "data": [
 {
 "circuit_id": "gameroom::acme-node-000::bubba-node-000::<UUIDv4>",
 "game_name": "alice_vs_bob",
 "player_1": "<Alice’s public key>",
 "player_2": "",

© 2019 Cargill, Incorporated 87

 "game_status": "P2-NEXT",
 "game_board": "----x----",
 "created_time": <time entry was created>,
 "updated_time": <time entry was updated>
 }
],
 "paging": {

 … [SNIP] …

 }
}

f. The Acme Gameroom UI now shows that Alice’s move has been committed by replacing

the spinner in the center square with a red X.

© 2019 Cargill, Incorporated 88

Ⅱ-​3. ​Behind Scene 3: Bob takes a turn
In Act Ⅱ, Scene 3, Bob notices his "new game" notification, clicks on it, and is redirected to the
game page. The notification process is the same as in Act Ⅰ, section Ⅰ-3, when Bob saw
Alice's invitation for the new gameroom. When Bob joins the game, the process is similar to
Alice's first move in Act Ⅱ, section Ⅱ-2. This section summarizes the process and highlights the
differences.

1. The Bubba Bakery client gets a notification of a new game in the Acme + Bubba gameroom

(see the details in ​section Ⅰ-3.6​)

2. Bob checks his notifications as described in ​section Ⅰ-4​.

3. When Bob clicks on his "alice_vs_bob" game notification, he joins the XO game with Alice.

a. The Bubba Bakery UI makes a call to the Gameroom REST API for the list of existing
games in the ​Acme + Bubba​ gameroom.

GET /xo/<circuitID>/games

b. The Bubba Bakery Gameroom REST API responds with a list of games. The game data

shows the status after Alice's first move, as described in ​section Ⅱ-2, step 6e​.

{
 "data": [
 {
 "circuit_id": "gameroom::acme-node-000::bubba-node-000::<UUIDv4>",
 "game_name": "alice_vs_bob",
 "player_1": "<Alice’s public key>",
 "player_2": "",
 "game_status": "P2-NEXT",
 "game_board": "----x----",
 "created_time": <time entry was created>,
 "updated_time": <time entry was updated>
 }
],
 "paging": {

 … [SNIP] …

 }
}

© 2019 Cargill, Incorporated 89

c. The Bubba Bakery UI then displays the game board and related information for the

alice_vs_bob​ game. Bob sees Alice's X in the center square.

4. When Bob clicks the top right square on the XO board, the Bubba Bakery client starts the

process of handling his "take a square" request.

a. The Bubba Bakery client creates an XO transaction request payload for taking the 3rd
square.

alice_vs_bob,take,3

b. The Bubba Bakery client wraps this transaction request payload in a ​sabre_payload

message (as described in ​section Ⅱ-1.1, step 2​), bundles the Sabre payload into a
batch and serializes it (see ​section Ⅱ-1.1, step 3​), then posts it to the Bubba Bakery
Gameroom REST API (see ​section Ⅱ-1-1, step 4​).

After the transaction is sent, the Bubba Gameroom UI displays a spinner until it is
notified that the game has been updated in state (described in section Ⅱ-x.x).

5. The Bubba Bakery REST API forwards the XO ‘take’ transaction to the scabbard service

(see the details in ​section Ⅱ-1.2​).

6. The Bubba Bakery and Acme scabbard services use consensus (defined in ​Appendix B​) to

commit the move, as described in ​section Ⅱ-1.3​. For Bob's move, Bubba Bakery's scabbard
service starts the process.

© 2019 Cargill, Incorporated 90

7. After Bob's move has been committed to scabbard state, the scabbard services send the
new state to the gameroom daemon via a WebSocket connection (as described in ​section
Ⅱ-1.4​).

This message includes an updated game board that has Bob's O in the top right square (3rd
space) of the game board and Bob's public key in the player_2 field.

  {

 “eventType”: “Set”,

 “message”: {

 “key”: “<xo game address>”,

 “value”: b“alice_vs_bob,--o-x----,P2-NEXT,​<Alice’s public key>​,​<Bob’s public key>​”
 }

}

8. When each Gameroom daemon receives the message, it updates the ​alice_vs_bob​ entry

in the ​xo_games​ table in the database (this entry was created in ​section Ⅱ-1.5​).

At the end of the operation, the ​xo_games​ table looks like this:

id circuit_id game_name player_1

<auto generated id> gameroom::acme-node-000::

bubba-node-000::<UUIDv4>

alice_vs_bob <Alice’s public key>

player_2 game_status game_board created_time updated_time

<Bob's public key> P1-NEXT --o-x---- <time entry was
created>

<time entry was
updated>

As with Alice's first move, the gameroom daemon also adds a "game updated" notification to
the ​gameroom_notification​ table (see ​section Ⅱ-2, step 5​).

9. The Gameroom REST APIs notify the Gameroom daemons that the XO game’s state has

been updated. This process is the same as for Alice's first move (see ​section Ⅱ-2, step 6​),
but the notification details contain information about Bob's move.

When the Gameroom REST APIs return the list of games and game data, the
alice_vs_bob​ game data shows that Bob is player_2, Alice has the next move, and each
player has made one move on the game board.

{
 "data": [
 {
 "circuit_id": "gameroom::acme-node-000::bubba-node-000::<UUIDv4>",
 "game_name": "alice_vs_bob",
 "player_1": "<Alice’s public key>",
 "player_2": "<Bob’s public key>",
 "game_status": "P1-NEXT",
 "game_board": "--o-x----",

© 2019 Cargill, Incorporated 91

 "created_time": <time entry was created>,
 "updated_time": <time entry was updated>
 }
],
 "paging": {

 … [SNIP] …

 }
}

10. The Bubba Bakery UI now shows that Bob's move has been committed by replacing the

spinner in the upper right corner with a blue O.

© 2019 Cargill, Incorporated 92

Ⅱ-​5. ​Behind Scene 5: Alice wins the game
After each move in the XO game, the XO smart contract checks the current game state to
determine if the move resulted in a win or a tie. If not, the game state is updated to show which
player moves next. (See ​Appendix D​ for the XO execution rules and game state values.)

1. Before Alice's last move, the ​xo_games​ table in the database looks like this:

id circuit_id game_name player_1

<auto-generated id> gameroom::acme-node-000::

bubba-node-000::<UUIDv4>

alice_vs_bob <Alice’s public key>

player_2 game_status game_board created_time updated_time

<Bob’s public key> P1-NEXT o-o-xox-x <time entry was
created>

<time entry was
updated>

After Alice clicks the winning spot, the move is approved and committed to state, and the
Gameroom daemons update the game state. Now, the ​xo_games​ table in the database
looks like this:

id circuit_id game_name player_1

<auto-generated id> gameroom::acme-node-000::

bubba-node-000::<UUIDv4>

alice_vs_bob <Alice’s public key>

player_2 game_status game_board created_time updated_time

<Bob’s public key> P1-WIN o-o-xoxxx <time entry was
created>

<time entry was
updated>

The ​P1-WIN​ game status means that neither player can make any more moves.

2. Each Gameroom daemon receives the notification of the game state change, as described
for Alice's first move (see ​section Ⅱ-2​) and Bob's first turn (see ​section Ⅱ-3​).

3. Each Gameroom daemon notifies the Gameroom UI to update the game board with Alice's
winning move on the game board, as described in those earlier sections.

The Acme UI shows a green row to indicate that Alice has won. The Bubba Bakery UI
shows the row in red to let Bob know that he has lost.

 ​

© 2019 Cargill, Incorporated 93

Act Ⅲ: Alice Creates Gamerooms with Yoda and
Zixi

Scene 1: The ketchup packet

[The scene starts at the cliffhanger ending of ACT 2.]

NARRATOR (voice-over)

Bob is furious that he lost the XO game to Alice. He

stands up -- jumps up, really -- and puts his foot on

a KETCHUP PACKET on the floor. He stumbles into a

MOBILE WHITEBOARD, grabbing the whiteboard as he

falls and pulling it on top of himself. The

whiteboard breaks his nose and his computer.

Bob screams in pain.

Scene 2: Alice and Yoda set up a gameroom

NARRATOR (voice-over)

Alice doesn't want to stop playing tic tac toe. She

asks her friend Yoda, the VP of Yoyodyne Systems, to

set up the Gameroom application at his company.

They start a competitive series of XO games in the

"Alice vs Yoda" gameroom, playing from early morning

until when Yoda leaves work.

IMAGE: Alice, hunched over her computer at sunset. CUT TO

BLACK.

Scene 3: Alice sets up a gameroom with Zixi

NARRATOR (voice-over)

Alice decides that she needs more gamerooms. She

arranges for Zixi, who works at Zymogen Industries,

to install the Gameroom application and join the

"Alice vs Zixi" gameroom. They play XO from dinner

time until midnight.

Zixi has no idea that Alice has multiple gamerooms.

She can only sees the "Alice vs Zixi" gameroom in her

view of the Gameroom application.

© 2019 Cargill, Incorporated 94

FADE OUT: Alice, hunched over her computer in a dark office.

Scene 4: Alice's addiction

FADE IN: Alice, hunched over her computer at dawn.

NARRATOR ​ (voice-over)

Alice can't stop playing XO. She sets up gamerooms

with people all over the globe. She lives in her

office. She starts stealing other people's lunches

from the office refrigerator. She drinks vending

machine coffee at all hours. She doesn't sleep.

Finally, her co-workers stage an intervention. Alice

goes to an addiction rehab center for a month.

When Alice returns to work, she never plays online

games. She also has an uncontrollable twitch when she

sees an X.

CUT TO BLACK.

© 2019 Cargill, Incorporated 95

Behind the Scenes: A Look at Act Ⅲ, Alice creates
Gamerooms with Yoda and Zixi
At the end of Act Ⅲ, Alice has three gamerooms. Her gamerooms with Yoda and Zixi are
created the same way as the first gameroom with Bob in Act Ⅰ. The game creation and XO
gameplay transactions are the same as in Act Ⅱ.

This section summarizes how Splinter manages circuits, services, and shared state to keep
each gameroom private and confidential.

© 2019 Cargill, Incorporated 96

A Splinter application, such as Gameroom, provides a set of distributed services that can
communicate with each other across a Splinter circuit. In Gameroom, the Splinter software
manages two-party private communication and network-wide multi-party shared state, all
managed with consensus.

● A ​circuit​ is a virtual network within the broader Splinter network that defines a visibility
domain and securely enforces privacy scope boundaries.

● Services​ provide applications with a REST API to dynamically create new circuits,
based on business need. A service is an endpoint within a circuit that sends and
receives private messages.

● Connections​ are dynamically constructed between nodes as circuits are created.

The existence of a circuit is confidential: Participants can see only the gamerooms that they
have been invited to or have joined . Alice sees her three gamerooms, but the other 1

participants see only their one gameroom with Alice. If Yoda and Zixi set up a Yoyodyne +
Zymogen gameroom, Alice wouldn't see it in her list of gamerooms.

Likewise, participant actions are private to the circuit. The transactions to create a gameroom,
start a new game, or make an XO move are private to the participants in a gameroom. Shared
state (a database updated by smart contracts) is visible only to the services within a circuit.

1 The example Gameroom application handles gameroom access at the node level. For example, any
user on the Acme node can view and join an Acme gameroom, including Alice's three gamerooms with
Bob, Yoda, and Zixi. However, other applications could choose to restrict participation at the user level.

© 2019 Cargill, Incorporated 97

The Prequel: Setting Up the Gameroom Application
Before Act 1 starts, sysadmins installed the Gameroom application on Alice and Bob's corporate
networks, and both people are registered as Gameroom users.

This section describes the installation and user-registration process. It also describes how the
Gameroom application registers the Gameroom daemon for admin service events.

P.1. Running the Gameroom Demo with Docker
Gameroom is a demo Splinter application that allows you to set up dynamic two-party circuits
(called "gamerooms") and play tic tac toe with shared state, as managed by two-phase commit
consensus between the parties.

Note​: This demo uses the Sabre smart contract engine provided in ​Sawtooth Sabre​ and the XO
smart contract provided in the ​Hyperledger Sawtooth Rust SDK​.

This example application includes a docker-compose file that sets up Splinter nodes for two
imaginary organizations: Acme Corporation and Bubba Bakery. Both nodes are created on the
same system so that this example is easy to run. For a proof-of-concept or production network,
however, each node should be on a separate system.

Prerequisites​: This demo requires ​Docker Engine​ and ​Docker Compose​.

1. Clone the ​splinter repository​.

2. To start Gameroom, run the following command from the Splinter root directory:

$ ​docker-compose -f examples/gameroom/docker-compose.yaml up

3. Get Alice's and Bob's private keys to use in the web application. To display these keys, run

bash​ using the ​generate-key-registry​ image, then read the private key.

For example, to get Alice's private key, use these commands:

$ ​docker-compose -f examples/gameroom/docker-compose.yaml \
run generate-key-registry bash

root@<container-id>:/# ​cat /key_registry/alice.priv; echo ""
Alice's-private-key-value
root@<container-id>:/#

© 2019 Cargill, Incorporated 98

https://github.com/hyperledger/sawtooth-sabre
https://github.com/hyperledger/sawtooth-sdk-rust/tree/master/examples/xo_rust
https://docs.docker.com/engine
https://docs.docker.com/compose
https://github.com/Cargill/splinter

4. In a browser, navigate to the Gameroom web application UI for each organization:

● Acme UI: ​http://localhost:8080

● Bubba Bakery UI: ​http://localhost:8081

5. When you are finished, shut down the demo.

a. Enter CONTROL-C in the terminal window where you ran ​docker-compose.yaml up​.

^C​ ​Gracefully stopping... (press Ctrl+C again to force)
Stopping gameroomd-acme ... done

Stopping gameroomd-bubba ... done

Stopping gameroom-app-acme ... done

Stopping splinterd-node-acme ... done

Stopping splinterd-node-bubba ... done

Stopping db-acme ... done

Stopping db-bubba ... done

Stopping gameroom-app-bubba ... done

$

b. Then shut down the docker containers with the following command:

$ ​docker-compose -f examples/gameroom/docker-compose.yaml down

© 2019 Cargill, Incorporated 99

http://localhost:8080/
http://localhost:8081/

P.2. Registering a User in the Gameroom UI

Each new user must register with the Gameroom application by specifying an email address,
providing their private key, and setting a password to use when logging in.

When Alice navigates to the Gameroom application in her browser, the UI welcome page
includes an option to register.

The Register page lets Alice enter her email address, private key, and password. The
Gameroom demo docker-compose file generates private keys for Alice and Bob. See ​section
P.1, step 3​ to learn how to display these private keys.

© 2019 Cargill, Incorporated 100

After Alice registers, she is automatically logged in. The Acme Gameroom UI displays the home
page.

When a new user registers, the Gameroom daemon adds a new entry for that user to the
gameroom_user​ table in the local Gameroom database. The ​gameroom_user​ table has the
following schema:

CREATE TABLE IF NOT EXISTS gameroom_user (

 email TEXT PRIMARY KEY,Ⅰ

 public_key TEXT NOT NULL,

 encrypted_private_key TEXT NOT NULL,

 hashed_password TEXT NOT NULL

);

For example, an entry for a new user looks like this:

email hashed_password public_key encrypted_private_key

user@example.com 56ec82cb...480cad32

0384781f...5a7e4998 {\"iv\":...cgXrm\"}

This information is used for authorization when a user logs in, as described for Alice in ​section
Ⅰ-1.2​ and for Bob in ​section Ⅰ-3.2​.

© 2019 Cargill, Incorporated 101

P.3. Registering the Gameroom daemon for admin service events
The Gameroom application needs to receive notifications for admin service events (described in
Appendix C​) so that it can react appropriately to circuit proposal events and other admin events.

To see these events, the Gameroom daemon (​gameroomd​) must register an application
authorization handler for circuits with a specific circuit management type. This handler manages
the voting strategy for the application and notifies the application of any events received from
the admin service on the local Splinter node.

As part of the event registration, the application authorization handler must specify the circuit
management type. The ​circuit_management_type​ string in the circuit definition briefly describes
the purpose of the circuit. For example, the Gameroom application uses the type ​gameroom​ for its
circuits (see the ​CircuitManagementPayload​ definition in ​section Ⅰ-2.3​).

When an event occurs (such as a new circuit proposal or vote), each admin service uses a
WebSocket connection to notify its application authorization handler about the event. In order to
receive WebSocket notifications, each application authorization handler must send a registration
request to its Splinter node’s REST API.

For example, the Acme and Bubba Bakery Gameroom daemons would send this registration
request:

GET /ws/admin/register/gameroom

See ​Appendix C​ for more information on circuit events.

© 2019 Cargill, Incorporated 102

Appendix A: Peer Authorization

This appendix describes the peer authorization process that occurs as part of creating a circuit.

To be able to communicate on a Splinter network, each node and service involved in the
proposed circuit must go through authorization. Each node must authorize with the other node
(or nodes) involved in the circuit; each service must authorize with its own node. After the node
or service is authorized, its peer ID (the node ID or service ID) is used to prove its identity.

Before a node or service is authorized, it can send only authorization messages (in a specific
order). If it sends any other messages before the connection is authorized, those messages will
be dropped.

A.1 The Authorization Process
When the admin service on the first node (the node where the circuit request originated)
requests connections with the other members' nodes and services (as described in ​section
Ⅰ-2.4​), it starts the process of authorizing the nodes and services on those nodes.

1. First, the node or service requesting authorization is given a temporary peer ID with the

following format:

temp-<uuid>

2. Next, the node or service sends a ​ConnectRequest​ message wrapped in an

AuthorizationMessage​.

The ​ConnectRequest​ specifies whether the authorization should be bidirectional (both
sides) or unidirectional (one side only).

● Connecting Splinter nodes should use bidirectional authorization, because each node

must be authorized with the other node.

● A Splinter service can use unidirectional authorization if it does not require the node to
authorize itself with the service.

 The following example shows a bidirectional authorization request from a node.

ConnectRequest:

handshake_mode: BIDIRECTIONAL

AuthorizationMessage:

message_type: CONNECT_REQUEST
 payload: <bytes of connect request>

© 2019 Cargill, Incorporated 103

3. When a Splinter node receives a ​ConnectRequest​, it responds with a ConnectResponse
that includes a list of supported authorization types. Currently, the only supported
authorization type is Trust, which means that the specified node or service (as identified by
the peer ID) will be accepted as valid without any proof.

 ​ ---

ConnectResponse:
accepted_authorization_types: [Trust]

4. When the node or service requesting authorization receives the ​ConnectResponse​, it
checks the list of accepted authorization types for a matching, supported ​authorization
type. If both sides support Trust authorization, this node or service will send a
TrustRequest​ message that includes its peer ID (either a node ID or service ID).

TrustRequest:

identity: <ID for the node or service>

5. When the node that is being connected to receives the ​TrustRequest​, it changes the
temporary peer ID to the actual peer ID (the node or service ID).

6. Next, this node sends an empty ​AuthorizedMessage​ to the connecting node or service to

signify that it is now authorized to communicate on the Splinter network.

A.2 Authorization Callbacks
When a new circuit is being created, the admin service may need to create a new connection to
Splinter nodes that are not currently connected. This is done using the ​PeerConnector​, as
described in ​section Ⅰ-2.4​. Before the admin service completes authorization, any
AdminDirectMessage​ it sends will be dropped. This section describes how authorization
callbacks are used to notify a node or service (such as the admin service) when the
authorization process is complete.

The ​AuthorizationInquisitor​ interrogates the authorization status for a given peer ID, and
includes a callback registration function to notify the caller of changes in peer authorization.

The ​AuthorizationInquisitor​ provides two methods:

● is_authorized​ checks whether a specific peer ID is registered

● register_callback​, which takes a boxed ​AuthorizationCallback​, requests
notification when a peer's authorization status changes

© 2019 Cargill, Incorporated 104

pub trait AuthorizationInquisitor: Send {

/// Register a callback to receive notifications about peer
 /// authorization statuses.

fn register_callback(
 &self,
 callback: Box<dyn AuthorizationCallback>,

) -> Result<(), AuthorizationCallbackError>;

/// Indicates whether or not a peer is authorized.
fn is_authorized(&self, peer_id: &str) -> bool;

}

An ​AuthorizationCallback​ is a trait that must implement an ​on_authorization_change
function that is called by the ​AuthorizationInquisitor​ when a peer's authorization status
change. It takes the peer ID of the node or service whose authorization status has changed and
the new ​PeerAuthorizationState​ (either ​Authorized​ or ​Unauthorized​).

pub enum PeerAuthorizationState {

Authorized,

Unauthorized,

}

/// A callback for changes in a peer's authorization state.

pub trait AuthorizationCallback: Send {

/// This function is called when a peer's state changes to Authorized

/// or Unauthorized.

fn on_authorization_change(

 &self,

 peer_id: &str,

 state: PeerAuthorizationState,

) -> Result<(), AuthorizationCallbackError>;

}

The admin service is passed an ​AuthorizationInquisitor​ on startup. Then the admin
service registers an ​AuthorizationCallback​ that will remove pending payloads from the
unpeered_payload​ queue and move them the pending circuit payload queue once all required
members have successfully peered and authorized.

© 2019 Cargill, Incorporated 105

Appendix B: Consensus
Consensus is used to reach agreement between multiple parties.

Within Splinter, consensus refers to a library that contains consensus algorithm implementations
(called "consensus engines") and a single interface for using those algorithms. Splinter services
are typically the consumers of this interface.

In the Gameroom application, both the admin service and the scabbard service use a
consensus algorithm called ​two-phase commit​, which is a basic consensus algorithm that
requires all participating parties to agree. If any party disagrees, the consensus proposal (the
item being considered) is rejected. The Gameroom example uses two-phase commit for items
such as circuit proposals, proposal validation, and transactions to add a smart contract.

B.1. Consensus Interface
The consensus interface defines the relationship between a service and a consensus engine.

A ​Proposal​ is the entity that consensus agrees on; it contains a summary of the underlying
data that a service would like to commit, as well as information that may be useful to consensus.
The ​Proposal​ is defined as a protobuf:

message Proposal {

 // The proposal’s identifier, which is a hash of `previous_id`,

 // `proposal_height`, and `summary`

 bytes id = 1;

 // The identifier of the proposal’s immediate predecessor

 bytes previous_id = 2;

 // The number of proposals preceding this one (used for ordering

 // purposes)

 uint64 proposal_height = 3;

 // A summary of the data this proposal represents

 bytes summary = 4;

 // Opaque data that is provided by the consensus algorithm

 bytes consensus_data = 5;

}

© 2019 Cargill, Incorporated 106

A message sent between consensus engines is called a ​ConsensusMessage​, and is defined by
the following protobuf:

message ConsensusMessage {

 // An opaque message that is interpreted by the consensus algorithm

 bytes message = 1;

 // ID of the service that created this message

 bytes origin_id = 2;

}

A service that uses consensus must implement two Rust traits for the consensus engine to
interact with: the ​ProposalManager​ trait, which manages the ​Proposal​s that consensus
decides on, and the ​ConsensusNetwork​ trait, which an engine uses to send messages to other
nodes’ consensus engines.

The consensus algorithm itself is implemented using the ​ConsensusEngine​ trait.

© 2019 Cargill, Incorporated 107

B.2. Two-Phase Commit
Two-phase commit (2PC) is a basic consensus algorithm that requires agreement from all
parties in order to accept a proposal.

The following diagram summarizes the operation of this algorithm. It shows the activities on two
nodes for the consensus engines (2PC-1 and 2PC-2), the proposal managers (PM-1 and PM-2),
and the consensus network senders (NS-1 and NS-2).

© 2019 Cargill, Incorporated 108

B.2.1. TwoPhaseMessage Types
Two-phase commit has three message types that are sent between its consensus engines:
PROPOSAL_VERIFICATION_REQUEST​, ​PROPOSAL_VERIFICATION_RESPONSE​, and
PROPOSAL_RESULT​. The following ​TwoPhaseMessage​ protobuf defines these message types.

message TwoPhaseMessage {

enum Type {

 UNSET_TYPE = 0;

 PROPOSAL_VERIFICATION_REQUEST = 1;

 PROPOSAL_VERIFICATION_RESPONSE = 2;

 PROPOSAL_RESULT = 3;

}

enum ProposalVerificationResponse {

 UNSET_VERIFICATION_RESPONSE = 0;

 VERIFIED = 1;

 FAILED = 2;

}

enum ProposalResult {

 UNSET_RESULT = 0;

 APPLY = 1;

 REJECT = 2;

}

Type message_type = 1;

bytes proposal_id = 2;

ProposalVerificationResponse proposal_verification_response = 3;

ProposalResult proposal_result = 4;

}

To send a message to one of its peers, the two-phase commit engine constructs the
TwoPhaseMessage​ protobuf, serializes it into bytes, and passes it to the
ConsensusNetworkSender​, which will then wrap it in a ​ConsensusMessage​ and relay it to one
or more peers.

When a two-phase engine receives a consensus message, it extracts and deserializes the
TwoPhaseMessage​ protobuf, then handles the message.

© 2019 Cargill, Incorporated 109

B.2.2. Startup
When a service using two-phase commit starts up, it creates the consensus engine and runs it
in a new thread.

B.2.3. Proposal Creation
The two-phase commit consensus engine can create new proposals when it is not already
performing consensus on a proposal. To create a new proposal, the consensus engine requests
a new proposal from the Splinter service using the ​ProposalManager.create_proposal()
method.

● If the service has data for consensus to agree on, it will create a proposal for that data
and send it to consensus as a ​ProposalCreated(Some(Proposal))​ update.

● If the service does ​not​ have data for consensus, it will send a ​ProposalCreated(None)

update to consensus, and consensus will ask again after a brief timeout.

After sending the new proposal to the consensus engine, the service sends the data (the item to
be decided on) to the other services in the circuit. The other services send the new proposal to
their respective consensus engines as a ​ProposalReceived(Proposal, PeerId)​ update,
where the ​PeerId​ is the ID of the consensus engine that created the proposal.

B.2.4. Coordinator and Initial Verification
A ​ProposalManager ​is a Rust trait that must be implemented for a Splinter service and is used
by the consensus engine to create, check, accept, and reject proposals

When a two-phase commit engine determines that it is the coordinator for a new proposal, it first
asks its service to verify the proposal using the ​ProposalManager.check_proposal()​ method.

If the proposal is valid, the proposal manager replies with a ​ProposalValid(ProposalId)
update; if it is invalid, it will reply with a ​ProposalInvalid(ProposalId)​ update.

● In the case of an invalid proposal, the coordinator will simply reject the proposal by
calling ​ProposalManager.reject_proposal()​ and instruct its peers to do the same by
broadcasting a ​ProposalResult::REJECT​ message.

● In the case of a valid proposal, the coordinator will request verification from the other

verifying peers.

© 2019 Cargill, Incorporated 110

B.2.5. Verification
To request verification from the verifying peers, the coordinator broadcasts a
PROPOSAL_VERIFICATION_REQUEST​ for the proposal using the service’s
ConsensusNetworkSender.broadcast()​ method.

When each verifying consensus engine receives the ​PROPOSAL_VERIFICATION_REQUEST​ from
the coordinator, it verifies the proposal itself by calling its service's
ProposalManager.check_proposal()​ method and waiting for a response.

● If the verifier receives a ​ProposalValid​ update from its proposal manager, it will send a
ProposalVerificationResponse::VERIFIED​ message to the coordinator using its
service’s ​ConsensusNetworkSender.send_to()​ method.

● If the verifier receives a ​ProposalInvalid​ update, it will send a

ProposalVerificationResponse::FAILED​ message to the coordinator.

B.2.6. Proposal Result and Commit/Reject
If the coordinator receives a ​ProposalVerificationResponse::FAILED​ response, the
consensus engine tells the ​ProposalsManager.reject_proposal​, which will roll back any
changes being stored in the service.

If the coordinator receives a ​ProposalVerificationResponse::VERIFIED​, the consensus
engine checks whether it has received a verification response from every peer. If the engine has
received all verification requests, it accepts the proposal and calls
ProposalsManager.accept_proposal​, which will commit the pending changes in the Splinter
service.

The coordinator then sends a message about the ​ProposalResult​ to its peers, with either an
APPLY​ or ​REJECT​ result. This notifies the other peers they should also accept or reject the
proposals.

© 2019 Cargill, Incorporated 111

Appendix C: Circuit Proposal Events
During Gameroom setup (see ​The Prequel​), each node's Gameroom application authorization
handler is registered as an authorization handler for the Gameroom application. This handler
receives messages (via a WebSocket connection) about circuit proposal events.

1. The application authorization handler, which is part of the Gameroom daemon, sends a

request to the Splinter REST API to register as an authorization handler for the Gameroom
application. The request is a WebSocket handshake request that looks like this:

GET /ws/admin/register/gameroom

Upgrade: websocket

Connection: Upgrade

Sec-Websocket-Version: 13

Sec-Websocket-key: 13

2. If the request is successful, the server sends a response indicating that the protocol will

change from HTTP to WebSocket. The response looks like this:

HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=

3. After the protocol has been upgraded, the Gameroom Application Authorization Handler

receives messages (via the WebSocket connection) about circuit proposal events related to
the Gameroom application. The event types include:

● ProposalSubmitted
● ProposalRejected
● ProposalAccepted
● ProposalVote

● CircuitReady

These event messages are serialized JSON.

© 2019 Cargill, Incorporated 112

C.1. ​ProposalSubmitted​ event
The serialized JSON message for a ​ProposalSubmitted​ event looks like this:

{

 "eventType": "ProposalSubmitted",

 "message": {

 "proposal_type": "Create",

 "circuit_id": "my_circuit",

 "Circuit_hash": "8e066d41911817a42ab098eda35a2a2b11e93c753bc5ecc3ffb3e99ed99ada0d",
 "circuit": {
 "circuit_id": "my_circuit",
 "roster": [
 {
 "service_id": "scabbard_123",
 "service_type": "scabbard",
 "allowed_nodes": [
 "acme_corp"
]
 }
],
 "members": [
 {
 "node_id": "Node-123",
 "endpoint": "127.0.0.1:8282”
 }
],
 "authorization_type": "Trust",
 "persistence": "Any",
 "routes": "Any",
 "circuit_management_type": "gameroom",
 "application_metadata": []
 },
 "votes": [],
 "requester": "<requester public key>"
 "requester_node_id": <node id of the node the requester is registered"
 }
}

© 2019 Cargill, Incorporated 113

C.2. ​ProposalRejected​ event
The serialized JSON message for a ​ProposalRejected​ event looks like this:

{
 "eventType": "ProposalRejected",
 "message": {
 "proposal_type": "Create",
 "circuit_id": "my_circuit",
 "circuit_hash": "8e066d41911817a42ab098eda35a2a2b11e93c753bc5ecc3ffb3e99ed99ada0d",
 "circuit": {
 "circuit_id": "my_circuit",
 "roster": [
 {
 "service_id": "scabbard_123",
 "service_type": "scabbard",
 "allowed_nodes": [
 "acme_corp"
]
 }
],
 "members": [
 {
 "node_id": "Node-123",
 "endpoint": "127.0.0.1:8282”
 }
],
 "authorization_type": "Trust",
 "persistence": "Any",
 "routes": "Any",
 "circuit_management_type": "gameroom",
 "application_metadata": []
 },
 "votes": [{
 “public_key”: “<publickeyofvoter>”,
 “vote”: “Rejected”
 "voter_node_id": “ <node id of the node the requester is registered>”
 }],
 "requester": "<requester public key>"
 "requester_node_id": <node id of the node the requester is registered>"

 }
}

© 2019 Cargill, Incorporated 114

C.3. ​ProposalAccepted​ event
The serialized JSON message for a ​ProposalAccepted​ event looks like this:

{
 "eventType": "ProposalAccepted",
 "message": {
 "proposal_type": "Create",
 "circuit_id": "my_circuit",
 "circuit_hash": "8e066d41911817a42ab098eda35a2a2b11e93c753bc5ecc3ffb3e99ed99ada0d",
 "circuit": {
 "circuit_id": "my_circuit",
 "roster": [
 {
 "service_id": "scabbard_123",
 "service_type": "scabbard",
 "allowed_nodes": [
 "acme_corp"
]
 }
],
 "members": [
 {
 "node_id": "Node-123",
 "endpoint": "127.0.0.1:8282”
 }
],
 "authorization_type": "Trust",
 "persistence": "Any",
 "routes": "Any",
 "circuit_management_type": "gameroom",
 "application_metadata": []
 },
 "votes": [{
 “public_key”: “<publickeyofvoter>”,
 “vote”: “Accepted”
 "voter_node_id": “ <node id of the node the requester is registered>”
 }],
 "requester": "<requester public key>"
 "requester_node_id": <node id of the node the requester is registered>"
 }
}

© 2019 Cargill, Incorporated 115

C.4. ​ProposalVote​ event
The serialized JSON message for a ​ProposalVote​ event looks like this:

 {
 "eventType": "ProposalVote",
 "message": {
 "proposal_type": "Create",
 "circuit_id": "my_circuit",
 "circuit_hash":
"8e066d41911817a42ab098eda35a2a2b11e93c753bc5ecc3ffb3e99ed99ada0d",
 "circuit": {
 "circuit_id": "my_circuit",
 "roster": [
 {
 "service_id": "scabbard_123",
 "service_type": "scabbard",
 "allowed_nodes": [
 "acme_corp"
]
 }
],
 "members": [
 {
 "node_id": "Node-123",
 "endpoint": "127.0.0.1:8282”
 }
],
 "authorization_type": "Trust",
 "persistence": "Any",
 "routes": "Any",
 "circuit_management_type": "gameroom",
 "application_metadata": []
 },
 "votes": [{
 “public_key”: “<publickeyofvoter>”,
 “vote”: “Accepted”
 "voter_node_id": “ <node id of the node the requester is registered>”
 }],
 "requester": "<requester public key>"
 "requester_node_id": <node id of the node the requester is registered>"
 },
}

© 2019 Cargill, Incorporated 116

Appendix D: XO Smart Contract Specification

The XO smart contract allows users to play the simple board game tic tac toe (also known as
"Noughts and Crosses" or "X’s and O’s").

D.1. XO State Entries
An XO state entry consists of the UTF-8 encoding of a string with exactly four commas, which
has the following format:

<game-name>,<game-board>,<game-state>,<player1-key>,<player2-key>

● <game-name>​ is the name of the game, as a non-empty string that does not contain the

character |.

● <game-board>​ represents the game board as a 9-character string (called "the board string")
that contains only ​O​, ​X​, or ​-​.

● <game-state>​ is one of the following: ​P1-NEXT​, ​P2-NEXT​, ​P1-WIN​, ​P2-WIN​, or ​TIE​. (​P1​ and
P2​ stand for "player 1" and "player 2".)

● <player1-key>​ and ​<player2-key>​ are the (possibly empty) public keys associated with
the game’s players.

In the event of a hash collision (two or more state entries sharing the same address), the
colliding state entries are stored as the UTF-8 encoding of the following string, with entries
sorted alphabetically:

 <a-entry>|<b-entry>|...

D.1.1. State Addressing
XO data is stored in state using addresses generated from the XO "family name" (explained
below) and the name of the game being stored.

In particular, an XO address consists of the first 6 characters of the SHA-512 hash of the UTF-8
encoding of the string “​xo​” (which is “​5b7349​”), plus the first 64 characters of the SHA-512 hash
of the UTF-8 encoding of the game name.

For example, the XO address for a game called “mygame” could be generated as follows:

>>>​ ​hashlib.sha512('xo'.encode('utf-8')).hexdigest()[:6] +
hashlib.sha512('mygame'.encode('utf-8')).hexdigest()[:64]
'5b7349700e158b598043efd6d7610345a75a00b22ac14c9278db53f586179a92b72fbd'

© 2019 Cargill, Incorporated 117

D.2. XO Transaction Payload
An XO transaction request payload consists of the UTF-8 encoding of a string with exactly two
commas, which is formatted as follows:

<name>,<action>,<space>

● <name>​ is the game name, as a non-empty string not containing the character ​|​. If ​<action>

is ​create​, the new name must be unique.

● <action>​ is the game action: ​create​, ​take​, or ​delete​.

● <space>​ is the location on the board, as an integer between 1-9 (inclusive), if ​<action>​ is
take​.

D.3. XO Transaction Header
Each XO transaction must include a header with the required inputs and outputs, plus the XO
"family name" and version.

D.3.1. Inputs and Outputs
The inputs and outputs for an XO transaction are just the state address generated from the
transaction game name.

D.3.2. Dependencies
XO transactions have no explicit dependencies.

D.3.3. Family Name and Version
Each smart contract has a "family name", which identifies the smart contract type, and a version
number. The term "family" comes from the XO transaction family (and transaction processor) in
Hyperledger Sawtooth, which is an off-chain version of the XO business logic.

● family_name: “​xo​”

● family_version: “​1.0​”

D.4. XO Execution
When a running XO smart contract receives a transaction request and a state dictionary, it
checks the validity of the request. A valid transaction request payload has a game name, an
action, and (if the action is ​take​) a space.

Next, the XO smart contract checks whether the transaction (the requested action) is valid, then
updates the state entry according to the specified action.

© 2019 Cargill, Incorporated 118

● If the action is ​create​, the transaction is invalid if the game name is already in state

dictionary. Otherwise, the smart contract will store a new state entry with board ​---------
(a blank board), game state ​P1-NEXT​, and empty strings for both player keys.

● If the action is ​delete​, the transaction is invalid if the game name is not in the state

dictionary. Otherwise, the smart contract will delete the state entry for the game.

● If the action is ​take​, the transaction is invalid if the game name is not in the state dictionary.

Otherwise, there is a state entry under the game name with a board, game state, player-1
key, and player-2 key.

1. If the game name is in the state dictionary, the transaction is invalid if one of the
following is true:
○ The game state is ​P1-WIN​, ​P2-WIN​, or ​TIE
○ The game state is ​P1-NEXT​, the player-1 key is not null, and the player-1 key is

different from the transaction signing key
○ The game state is ​P2-NEXT​, the player-2 key is not null, and the player-2 key is

different from the transaction signing key
○ The specified ("space-th") character in the board string has already been claimed (is

not ​-​).
2. Otherwise, the smart contract will update the state entry as follows:

a. Player keys: If the player-1 key is null (the empty string), it will be updated to the key
with which the transaction was signed. If the player-1 key is not null and the player-2
key is null, the player-2 key will be updated to the signing key. Otherwise, the player
keys will not be changed.

b. Board: If the game state is ​P1-NEXT​, the board will be updated with an ​X​ (player 1's
character) in the specified space. That is, the updated board will be the same as the
initial board, except with the "space-th" character replaced by the character ​X​. If the
game state is ​P2-NEXT​, the same action occurs with an ​O​ (player 2's character).

c. Game state: The smart contract updates the game state based on the contents of
the board string. In this description, the first three characters of the board string
represent the ​first row​, the next three characters are the ​second row​, and the last
three characters are the ​third row​.
A character has a win on the board if any of the following is true:
■ If any row consists of the same character.
■ If the same character appears in a column (all the rows have the same first or

second or third character).
■ If the same character appears in a diagonal line (the first character/first row,

second character/second row, and third character/third row are the same; or the
third character /first row, second character/second row, and first character/third
row are the same).

© 2019 Cargill, Incorporated 119

3. Then the smart contract checks for a tie:

○ If ​X​ has a win on the board and ​O​ doesn’t, the updated state will be ​P1-WINS​.
○ If ​O​ has a win on the board and ​X​ doesn’t, the updated state will be ​P2-WINS​.
○ Otherwise, if the updated board has no empty spaces (does not contain ​-​), the

updated state will be ​TIE​.
○ Otherwise, the game continues and the other player takes a turn. If the initial state

was ​P1-NEXT​, the updated state will be ​P2-NEXT​. Conversely, if the initial state was
P2-NEXT​, the updated state will be ​P1-NEXT​.

© 2019 Cargill, Incorporated 120

Glossary

admin circuit

Splinter circuit that automatically includes the admin services of all connected nodes.
This circuit is used to send administrative messages for operations such as circuit
creation.

admin service

Splinter service that handles administration tasks. In the Gameroom application, the
admin service is part of the Splinter daemon (​splinterd​) that runs on each node.

Each admin service has a service ID in the form ​admin::{nodeID​}. For example, the
service ID for Gameroom's Acme admin service is ​admin::acme-node-000​.

alias

User-supplied name for a circuit. The Gameroom UI calls this a "gameroom name".

application authorization handler

Part of an application that handles notifications for pending circuit proposals and commit
protocol updates. The application authorization handler also determines how voting is
handled for the application, such as waiting for the client to submit a manual vote or
accepting all received proposals.

The application authorization handler must register with the admin service (using the
Splinter REST API) for a specific circuit management type, so that the admin service
knows which circuit proposals are controlled by this handler.

circuit

Splinter connection between organizations (nodes) that provides private communication,
as managed by services on each node. A client application might use a different term;
for example, the Gameroom application calls this a "gameroom".

In addition, all nodes can connect to an admin circuit that handles administration
functions.

circuit management type

String (stored in a circuit definition) that indicates which application authorization handler
will handle this circuit's change proposals. An application authorization handler uses this
string when registering as a handler with the node's admin service.

© 2019 Cargill, Incorporated 121

circuit proposal
Circuit that has been requested but is not final. A circuit proposal, which is stored in the
admin service, contains the pending circuit definition and the votes for or against the
proposal. The pending circuit in the proposal cannot be used for communication until the
circuit is approved and the accepted proposal is committed.

circuit roster

Set of services that are authorized to communicate over the circuit.

client

Short term for a client application for Splinter. A client application usually includes a user
interface (UI) and a server-side daemon with application-specific handlers. For example,
the Gameroom client has a web-based browser interface and a Gameroom daemon,
gameroomd​.

consensus

Splinter component that is used by services to agree on shared state.

consensus proposal

Encapsulation of data that services want to agree on (like a transaction), plus
consensus-specific information such as ID and ordering information.

Gameroom

Example multi-party Splinter application (also called a "distributed application") that
creates circuits with specific members. Note that the capital G marks the application
name; an individual circuit is called a ​gameroom​ (with a lower-case g).

gameroomd

Gameroom daemon; part of the example Gameroom application that provides the
Gameroom REST API and Gameroom application authorization handler.

invitation

Gameroom application's term for a circuit proposal that contains a pending circuit.

member

Splinter node that is a proposed or actual participant in a circuit.

peer nodes

Splinter nodes that have an authorized (authenticated) connection to each other.
Peering is a trusted connection between nodes.

peer services
Splinter services that share an isolated portion of state on a circuit.

© 2019 Cargill, Incorporated 122

pending circuit

Proposed circuit (defined in a circuit proposal) that is waiting for approval and is not yet
ready for use. The Gameroom application uses the term "invitation" and marks proposed
gamerooms with the status "Pending".

scabbard

Splinter service that includes the ​Sawtooth Sabre transaction handler​ and ​Hyperledger
Transact​, using two-phase commit consensus to agree on state. This application-specific
service is specifically configured to work with the example Gameroom application.

scabbard REST API

Endpoints exposed by the Splinter REST API that allow interactions with a scabbard
service (for operations such as adding batches).

service

Portion of a daemon that handles administration or application-specific functions, such
as the Splinter daemon's admin service or the Gameroom daemon's scabbard service. A
service has a service ID that is specified in the circuit definition.

service orchestrator

Splinter component that is used by the admin service to initialize new services when a
circuit is created.

splinterd

Splinter daemon that includes a Splinter REST API and an admin service.

state delta export

Process of reading state-change updates from Splinter and uploading them to a local
database. An application provides this functionality in a state delta processor (or state
delta export process). For example, the Gameroom application registers for XO smart
contract updates and uses the ​XoStateDeltaProcessor​ to process the information.

two-phase commit

Basic consensus algorithm that requires all participating parties to agree. If any party
disagrees, the consensus proposal (the item being considered) is rejected.

© 2019 Cargill, Incorporated 123

https://sawtooth.hyperledger.org/docs/sabre/releases/latest/sabre_transaction_family.html
https://docs.rs/transact/
https://docs.rs/transact/

